Skip to content

mrbrightsides/sinergi

Repository files navigation

🌟 SINERGI - AI, IoT & Big Data Learning Platform

SINERGI Platform Next.js TypeScript License

An Interactive Educational Platform Demonstrating the Synergy of AI, IoT, and Big Data

πŸš€ Quick Start β€’ πŸ“– Documentation β€’ ✨ Features β€’ 🎯 Target Audience


πŸ“‹ Table of Contents


🎯 About SINERGI

SINERGI (Synergy of Intelligent Networks, Edge computing, Real-time analytics, Governance, and Innovation) is a comprehensive educational and sandbox demonstration platform that showcases the transformative power of AI, IoT, and Big Data in modern information systems.

Why SINERGI?

In today's rapidly evolving tech landscape, understanding the intersection of AI, IoT, and Big Data is crucial. SINERGI provides:

  • Interactive Learning: Hands-on modules with real code execution
  • Real-World Simulations: Live IoT device simulations with real-time data
  • Practical Experience: Jupyter-like notebook workspace for experimentation
  • Industry Datasets: 10+ curated datasets from various industries
  • AI-Powered Assistance: Integrated AI tutors and coding helpers
  • Professional Outputs: Generate certifications and business case reports

✨ Key Features

πŸŽ“ Learning Hub

  • 12 Comprehensive Modules covering beginner to advanced topics
  • Interactive quizzes with instant feedback
  • Progress tracking and achievement system
  • Difficulty levels: Easy, Medium, Hard
  • Real code examples with syntax highlighting

πŸ—οΈ Architecture Explorer

  • Visual interactive architecture diagrams
  • Deep-dive into each component (IoT Layer, Data Layer, AI Layer, Edge Computing)
  • Technology recommendations and best practices
  • Real-world implementation patterns

πŸ”„ Live Simulator

  • Real-time IoT device simulations
  • Multiple device types: Temperature sensors, Smart meters, GPS trackers, Industrial machines
  • Live data streaming with MQTT protocol
  • Anomaly detection and alerts
  • Data export capabilities

πŸ§ͺ Hands-on Labs

  • 6 Practical labs with step-by-step guides
  • Real Python code execution via Pyodide
  • Labs cover: IoT basics, data processing, ML integration, real-time analytics
  • Code editor with syntax highlighting
  • Import datasets directly from Dataset Library

πŸ““ Notebook Workspace

  • Jupyter-like interactive environment
  • Real Python execution in browser
  • Pre-loaded libraries: pandas, numpy, scikit-learn, matplotlib
  • Save and manage multiple notebooks
  • Import datasets for analysis

πŸ“Š Dataset Library

  • 10 Industry Datasets including:
    • Manufacturing Equipment Sensors
    • Patient Vital Signs Monitoring
    • Smart City Traffic Analytics
    • Financial Transaction Stream
    • Smart Agriculture IoT Data
    • Supply Chain Tracking Data
  • Search and filter capabilities
  • CSV export functionality
  • Direct integration with Labs and Notebooks

πŸ’Ό Business Case Builder

  • ROI Calculator with customizable parameters
  • Professional PDF report generation
  • QR code embedded reports
  • Scenario analysis (Conservative, Moderate, Aggressive)
  • Cost-benefit breakdown

πŸ“œ Policy & Governance

  • Comprehensive governance frameworks
  • GDPR, HIPAA, ISO compliance guides
  • Best practices for data privacy and security
  • Industry-specific regulations
  • Professional certification generation

πŸ“ˆ Analytics Dashboard

  • Comprehensive Progress Tracking
  • Quiz performance analytics
  • Time tracking per module
  • Learning streaks and consistency metrics
  • Category-based performance breakdown
  • 7-day activity visualization
  • Personalized insights and recommendations
  • Export analytics data

πŸ€– AI Features

  • AI Learning Assistant: Get explanations, examples, and learning guidance
  • AI Coding Helper: Debug code, get suggestions, and learn best practices
  • Powered by Perplexity API
  • Context-aware responses

🎯 Target Audience

πŸŽ“ Undergraduate Students

Perfect for students learning about IoT, Big Data, AI, and Information Systems

πŸ’» IT Professionals

Upskill in modern tech stacks and architectural patterns

πŸ“Š Product Managers

Understand technical capabilities and make informed decisions

πŸ›οΈ Policymakers

Learn about governance, compliance, and ethical considerations

πŸš€ Startups & Innovators

Explore possibilities and build business cases for IoT/AI solutions


πŸš€ Quick Start

Prerequisites

  • Node.js 18+
  • npm or yarn
  • Modern web browser (Chrome, Firefox, Safari, Edge)

Installation

  1. Clone the repository

    git clone https://github.com/yourusername/sinergi.git
    cd sinergi
  2. Install dependencies

    npm install
    # or
    yarn install
  3. Set up environment variables

    cp .env.example .env.local

    Add your API keys:

    PERPLEXITY_API_KEY=your_api_key_here
  4. Run the development server

    npm run dev
    # or
    yarn dev
  5. Open your browser

    http://localhost:3000
    

First Steps

  1. πŸŽ“ Start with Learning Hub - Complete Module 1 (Introduction to IoT)
  2. πŸ—οΈ Explore Architecture Explorer - Understand the system components
  3. πŸ”„ Try Live Simulator - See real-time IoT data in action
  4. πŸ§ͺ Complete a Hands-on Lab - Build your first IoT data processor
  5. πŸ“ˆ Check Analytics Dashboard - Track your progress

🧰 Technology Stack

Frontend

  • Next.js 14 - React framework with App Router
  • TypeScript - Type-safe development
  • Tailwind CSS - Utility-first styling
  • Framer Motion - Smooth animations
  • Recharts - Data visualization
  • Lucide React - Icon library

Code Execution

  • Pyodide - Python runtime in WebAssembly
  • CodeMirror - Code editor with syntax highlighting

AI Integration

  • Perplexity API - AI-powered assistance and learning

Data & State Management

  • React Hooks - State management
  • LocalStorage - Progress persistence
  • Context API - Global state

PDF Generation

  • jsPDF - Professional report generation
  • QR Code - Certificate verification

Real-time Simulation

  • WebSocket-ready - For future real-time features
  • MQTT concepts - IoT protocol demonstrations

πŸ“ Project Structure

sinergi/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ app/
β”‚   β”‚   β”œβ”€β”€ page.tsx              # Main application entry
β”‚   β”‚   └── layout.tsx            # Root layout
β”‚   β”œβ”€β”€ components/
β”‚   β”‚   β”œβ”€β”€ ui/                   # Reusable UI components
β”‚   β”‚   β”œβ”€β”€ learning-hub.tsx      # Learning modules
β”‚   β”‚   β”œβ”€β”€ architecture-explorer.tsx
β”‚   β”‚   β”œβ”€β”€ live-simulator.tsx
β”‚   β”‚   β”œβ”€β”€ hands-on-labs.tsx
β”‚   β”‚   β”œβ”€β”€ notebook-workspace.tsx
β”‚   β”‚   β”œβ”€β”€ dataset-library.tsx
β”‚   β”‚   β”œβ”€β”€ business-case-builder.tsx
β”‚   β”‚   β”œβ”€β”€ policy-governance.tsx
β”‚   β”‚   β”œβ”€β”€ analytics-dashboard.tsx
β”‚   β”‚   β”œβ”€β”€ ai-assistant.tsx
β”‚   β”‚   └── quiz-modal.tsx
β”‚   β”œβ”€β”€ lib/
β”‚   β”‚   β”œβ”€β”€ modules.ts            # Learning module data
β”‚   β”‚   β”œβ”€β”€ datasets.ts           # Dataset definitions
β”‚   β”‚   β”œβ”€β”€ labs.ts              # Lab content
β”‚   β”‚   └── utils.ts             # Utility functions
β”‚   └── styles/
β”‚       └── globals.css          # Global styles
β”œβ”€β”€ public/
β”‚   └── .well-known/
β”‚       └── farcaster.json       # Farcaster integration
β”œβ”€β”€ docs/
β”‚   β”œβ”€β”€ USER_GUIDE.md            # User documentation
β”‚   β”œβ”€β”€ DEVELOPER_GUIDE.md       # Developer documentation
β”‚   β”œβ”€β”€ API_REFERENCE.md         # API documentation
β”‚   └── DEPLOYMENT_GUIDE.md      # Deployment guide
β”œβ”€β”€ README.md                     # This file
β”œβ”€β”€ package.json
β”œβ”€β”€ tsconfig.json
└── tailwind.config.ts

πŸ“– Documentation


🎨 Design Philosophy

Neon Glow Web3 Aesthetic

  • Dark theme with vibrant purple/cyan neon accents
  • Glassmorphism effects
  • Smooth animations and transitions
  • Modern, futuristic UI

User Experience

  • Intuitive navigation
  • Progressive disclosure
  • Real, tangible outputs (no mockups)
  • Cross-feature integration
  • Persistent progress tracking

Educational Approach

  • Learn by doing
  • Immediate feedback
  • Real code execution
  • Industry-relevant examples
  • Gamification elements

🌟 Roadmap

Current Version: 1.0

  • βœ… 12 Learning modules with quizzes
  • βœ… Architecture Explorer
  • βœ… Live IoT Simulator
  • βœ… 6 Hands-on Labs
  • βœ… Notebook Workspace
  • βœ… 10 Industry Datasets
  • βœ… Business Case Builder
  • βœ… Policy & Governance
  • βœ… Analytics Dashboard
  • βœ… AI Assistant & Coding Helper

Future Enhancements

  • πŸ”„ Multi-user collaboration
  • πŸ”„ Social learning features
  • πŸ”„ More advanced labs
  • πŸ”„ Video tutorials
  • πŸ”„ Certification programs
  • πŸ”„ Community marketplace for notebooks
  • πŸ”„ Real hardware integration guides
  • πŸ”„ Mobile app

🀝 Contributing

We welcome contributions! Whether it's:

  • πŸ› Bug reports
  • ✨ Feature requests
  • πŸ“ Documentation improvements
  • πŸ”§ Code contributions

Please see our Contributing Guidelines for details.


πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ™ Acknowledgments


πŸ“ž Support


Built with ❀️ for the future of education

SINERGI - Smart Integration of AI, IoT, and Big Data; Version: 1.0.0

⬆ Back to Top

Releases

No releases published

Packages

No packages published

Languages