A fully functional Agentic AI Travel Planner built using LangGraph, OpenAI, and SingleStore.
This AI system helps users:
- ✔️ Get hotel recommendations
- ✔️ Find flights
- ✔️ Fetch weather information
- ✔️ Cache results in SingleStore. Get your free SingleStore account
- ✔️ Build reproducible agentic workflows
All powered by a modular LangGraph graph with independent agents.
Live demo: https://travel-agentic-ai.onrender.com/
For a detailed description of the agent architecture and step-by-step examples, see docs/agent_architecture.md.
Clone the repository:
git clone https://github.com/pavanbelagatti/Agentic-AI-Travel-Agent.git
cd Agentic-AI-Travel-Agent.gitpython3 -m venv venv
source .venv/bin/activate # For Mac/Linux
OR
.\.venv\Scripts\activate # For Windowspip install -r requirements.txt
Copy .env.example to .env and fill in your real values locally. Do NOT commit your .env file to the repository.
cp .env.example .env
# then edit .env and add your secrets locallyIf you are deploying to a platform (Render, Streamlit Cloud, etc.) add the same variables to the platform's secret manager or environment settings.
- Signup & Log in to SingleStore Account
- Click Create Database → Name it TravelAG or whatever you wish to name it
- Open the SQL Editor in the SingleStore dashboard
- Run the following table creation queries:
CREATE TABLE IF NOT EXISTS accommodations (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
provider VARCHAR(100),
provider_item_id VARCHAR(200),
name VARCHAR(255),
location_city VARCHAR(255),
location_country VARCHAR(255),
bedrooms INT,
price_per_night DOUBLE,
rating DOUBLE,
url TEXT,
vector BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE IF NOT EXISTS flights (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
provider VARCHAR(100),
airline VARCHAR(200),
origin VARCHAR(10),
destination VARCHAR(10),
depart_time VARCHAR(50),
arrive_time VARCHAR(50),
price DOUBLE,
url TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
These tables will remain empty initially — your LangGraph agents will store results into them automatically during the first run.
python main.py
- Origin airport/city
- Destination
- Start & end dates
- Bedrooms
- Budget
- Minimum rating
- Weather summary
- Top hotel recommendations
- Top flight options