A PyQt5-based desktop application that allows jjusers to analyze CVs (PDF/DOCX) with text extraction, keyword detection, and AI-assisted insights.
- Upload and analyze CVs (PDF/DOCX).
- Extract text and detect important keywords.
- Simple and clean PyQt5 user interface.
- Export results for reporting.
git clone https://github.com/yourusername/CV_Analyzer.git
cd CV_Analyzerpython -m venv venv
venv\Scripts\activate # (Windows)
# or
source venv/bin/activate # (Linux/Mac)python -m pip install --upgrade pip setuptools wheel
pip install -r requirements.txtThis project uses Tesseract OCR for extracting text from CVs.
Windows: Download the installer from UB Mannheim builds
(Recommended version: tesseract-ocr-w64-setup-5.x.x.exe)
.\Tesseract-OCR\
After installing requirements, you’ll notice two directories inside venv\Lib\site-packages:
en_core_web_lg-3.8.0/
en_core_web_trf-3.8.0/
Go to your venv site-packages directory:
venv\Lib\site-packagesMove the contents of: en_core_web_lg/en_core_web_lg-3.8.0/ → into en_core_web_lg/ en_core_web_trf/en_core_web_trf-3.8.0/ → into en_core_web_trf/
Delete the empty folders: en_core_web_lg-3.8.0 en_core_web_trf-3.8.0
This ensures spaCy can properly import the models: import en_core_web_lg import en_core_web_trf
python CV_Analyzer.pyThis project is licensed under the MIT License - see the LICENSE file for details.