This repository contains code to train a DDP model on the CelebA dataset.
The project is inspired by the "Denoising Diffusion Probabilistic Models" paper, but streamlined to work with a single dataset (CelebA) for simplicity.
git clone <your-repo-url>
cd <repo-name>pip install -r requirements.txtEvery experiment took ~15 hours (200 epochs) using 1x Nvidia 4090 GPUs.
python src/train_ddpm.py data_path=<path-to-celeba-dataset> log_dir=<where-to-store-logs>python src/train_ddpm.py --config-name=train_ddpm_class_cond cfg_scale=0 data_path=<path-to-celeba-dataset> log_dir=<where-to-store-logs>python src/train_ddpm.py --config-name=train_ddpm_class_cond data_path=<path-to-celeba-dataset> log_dir=<where-to-store-logs>python scripts/generate_images.py ckpt_path=<path-to-ckpt>python scripts/generate_images.py --config-name=generate_images_cond ckpt_path=<path-to-ckpt> cfg_scale=3.0python scripts/generate_images.py --config-name=generate_images_cond ckpt_path=<path-to-ckpt> cfg_scale=3.0This project is simplified for research/educational purposes and focuses only on the CelebA dataset.
