Interactive terminal CLI for building and running LLM agents. Built with LangChain, LangGraph, Prompt Toolkit, and Rich.
demo.mov
- Deep Agent Architecture - Planning tools, virtual filesystem, and sub-agent delegation for complex multi-step tasks
- LangGraph Server Mode - Run agents as API servers with LangGraph Studio integration for visual debugging
- Multi-Provider LLM Support - OpenAI, Anthropic, Google, AWS Bedrock, Ollama, DeepSeek, ZhipuAI, and local models (LMStudio, Ollama)
- Multimodal Image Support - Send images to vision models via clipboard paste, drag-and-drop, or absolute paths
- Extensible Tool System - File operations, web search, terminal access, grep search, and MCP server integration
- Skill System - Modular knowledge packages that extend agent capabilities with specialized workflows and domain expertise
- Persistent Conversations - SQLite-backed thread storage with resume, replay, and compression
- User Memory - Project-specific custom instructions and preferences that persist across conversations
- Human-in-the-Loop - Configurable tool approval system with regex-based allow/deny rules
- Cost Tracking (Beta) - Token usage and cost calculation per conversation
- MCP Server Support - Integrate external tool servers via MCP protocol with optional stateful connections
- Sandbox (Beta) - Secure isolated execution for tools with filesystem, network, and syscall restrictions
- Python 3.13+ - Required for the project
- uv - Fast Python package installer (install instructions)
- ripgrep (rg) - Required for fast code search (
grep_searchtool) and directory structure visualization (get_directory_structuretool):- macOS:
brew install ripgrep - Ubuntu/Debian:
sudo apt install ripgrep - Arch Linux:
sudo pacman -S ripgrep
- macOS:
- fd - Required for fast file/directory completion with
@(fallback when not in a Git repository):- macOS:
brew install fd - Ubuntu/Debian:
sudo apt install fd-find && sudo ln -s $(which fdfind) /usr/bin/fd - Arch Linux:
sudo pacman -S fd
- macOS:
- tree - Required for file system visualization:
- macOS:
brew install tree - Ubuntu/Debian:
sudo apt install tree - Arch Linux:
sudo pacman -S tree
- macOS:
- bubblewrap (Linux only, optional) - Required for sandbox feature:
- Ubuntu/Debian:
sudo apt install bubblewrap - Arch Linux:
sudo pacman -S bubblewrap - Optional enhanced syscall filtering:
uv pip install pyseccomp
- Ubuntu/Debian:
- Node.js & npm (optional) - Required only if using MCP servers that run via npx
The .langrepl config directory is created in your working directory (or use -w to specify a location).
Aliases: langrepl or lg
Quick try (no installation):
uvx langrepl
uvx langrepl -w /path # specify working dirInstall globally:
uv tool install langrepl
# or with pipx:
pipx install langreplThen run from any directory:
langrepl # or: lg
langrepl -w /path # specify working directoryQuick try (no installation):
uvx --from git+https://github.com/midodimori/langrepl langrepl
uvx --from git+https://github.com/midodimori/langrepl langrepl -w /path # specify working dirInstall globally:
uv tool install git+https://github.com/midodimori/langreplThen run from any directory:
langrepl # or: lg
langrepl -w /path # specify working directoryClone and install:
git clone https://github.com/midodimori/langrepl.git
cd langrepl
make install
uv tool install --editable .Then run from any directory (same as above).
Configure langrepl using environment variables via .env file or shell exports.
Using .env file (recommended):
# Create .env in your working directory
LLM__OPENAI_API_KEY=your_openai_api_key_here
LANGCHAIN_TRACING_V2=trueUsing shell exports:
export LLM__OPENAI_API_KEY=your_openai_api_key_here
export LANGCHAIN_TRACING_V2=true# OpenAI
LLM__OPENAI_API_KEY=your_openai_api_key_here
# Anthropic
LLM__ANTHROPIC_API_KEY=your_anthropic_api_key_here
# Google
LLM__GOOGLE_API_KEY=your_google_api_key_here
# DeepSeek
LLM__DEEPSEEK_API_KEY=your_deepseek_api_key_here
# Zhipu AI
LLM__ZHIPUAI_API_KEY=your_zhipuai_api_key_here
# AWS Bedrock (optional, falls back to AWS CLI credentials)
LLM__AWS_ACCESS_KEY_ID=your_aws_access_key_id
LLM__AWS_SECRET_ACCESS_KEY=your_aws_secret_access_key
LLM__AWS_SESSION_TOKEN=your_aws_session_token # Optional
# Local model base URLs
LLM__OLLAMA_BASE_URL=http://localhost:11434 # Default
LLM__LMSTUDIO_BASE_URL=http://localhost:1234/v1 # DefaultLangSmith (recommended for debugging):
LANGCHAIN_TRACING_V2=true
LANGCHAIN_API_KEY=your_langsmith_api_key
LANGCHAIN_PROJECT=your_project_name # Optional
LANGCHAIN_ENDPOINT=https://api.smith.langchain.com # DefaultLLM__HTTP_PROXY=http://proxy.example.com:8080
LLM__HTTPS_PROXY=https://proxy.example.com:8443TOOL_SETTINGS__MAX_COLUMNS=1500 # Grep max columns (default: 1500)
TOOL_SETTINGS__CONTEXT_LINES=2 # Grep context lines (default: 2)
TOOL_SETTINGS__SEARCH_LIMIT=25 # Grep search limit (default: 25)CLI__THEME=dracula # UI theme (default: dracula)
CLI__PROMPT_STYLE="❯ " # Prompt style (default: "❯ ")
CLI__ENABLE_WORD_WRAP=true # Word wrap (default: true)
CLI__EDITOR=nano # Editor for /memory (default: nano)
CLI__MAX_AUTOCOMPLETE_SUGGESTIONS=10 # Autocomplete limit (default: 10)SERVER__LANGGRAPH_SERVER_URL=http://localhost:2024 # DefaultLOG_LEVEL=INFO # Log level (default: INFO)
SUPPRESS_GRPC_WARNINGS=true # Suppress gRPC warnings (default: true)langrepl [OPTIONS] [MESSAGE]| Argument | Description |
|---|---|
message |
Message to send in one-shot mode. Omit for interactive mode. |
| Flag | Long Form | Description | Default |
|---|---|---|---|
-h |
--help |
Show help message and exit | - |
-w |
--working-dir |
Working directory for the session | Current directory |
-a |
--agent |
Agent to use for the session | Default agent from config |
-m |
--model |
LLM model to use (overrides agent's default) | Agent's default model |
-r |
--resume |
Resume the last conversation thread | false |
-t |
--timer |
Enable performance timing for startup phases | false |
-s |
--server |
Run in LangGraph server mode | false |
-am |
--approval-mode |
Tool approval mode: semi-active, active, aggressive |
From config |
-v |
--verbose |
Enable verbose logging to console and .langrepl/logs/app.log |
false |
# Interactive mode with default settings
langrepl
# One-shot mode
langrepl "What is the capital of France?"
# Specify working directory
langrepl -w /path/to/project
# Use specific agent
langrepl -a claude-style-coder
# Override agent's model
langrepl -a general -m gpt-4o
# Resume last conversation
langrepl -r
# Resume with new message
langrepl -r "Continue from where we left off"
# Set approval mode
langrepl -am aggressive
# LangGraph server mode
langrepl -s -a general
# Verbose logging
langrepl -v
# Combine flags
langrepl -w /my/project -a code-reviewer -am active -vLangrepl ships with multiple prebuilt agents:
general(default) - General-purpose agent for research, writing, analysis, and planningclaude-style-coder- Software development agent mimicking Claude Code's behaviorcode-reviewer- Code review agent focusing on quality and best practices
langrepl # Start interactive session (general agent by default)
langrepl -a general # Use specific agent
langrepl -r # Resume last conversation
langrepl -am ACTIVE # Set approval mode (SEMI_ACTIVE, ACTIVE, AGGRESSIVE)
langrepl -w /path # Set working directory
lg # Quick aliaslangrepl "your message here" # Send message and exit
langrepl "what is 2+2?" -am aggressive # With approval mode
langrepl -a general "search for latest news" # Use specific agent
langrepl -r "continue from where we left off" # Resume conversationlangrepl -s -a general # Start LangGraph server
langrepl -s -a general -am ACTIVE # With approval mode
# Server: http://localhost:2024
# Studio: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024
# API Docs: http://localhost:2024/docsServer features:
- Auto-generates
langgraph.jsonconfiguration - Creates/updates assistants via LangGraph API
- Enables visual debugging with LangGraph Studio
- Supports all agent configs and MCP servers
/resume - Switch between conversation threads
Shows list of all saved threads with timestamps. Select one to continue that conversation.
/replay - Branch from previous message
Shows all previous human messages in current thread. Select one to branch from that point while preserving the original conversation.
/compress - Compress conversation history
Compresses messages using LLM summarization to reduce token usage. Creates new thread with compressed history (e.g., 150 messages/45K tokens → 3 messages/8K tokens).
/clear - Start new conversation
Clear screen and start a new conversation thread while keeping previous thread saved.
/agents - Switch agent
Shows all configured agents with interactive selector. Switch between specialized agents (e.g., coder, researcher, analyst).
/model - Switch LLM model
Shows all configured models with interactive selector. Switch between models for cost/quality tradeoffs.
/tools - View available tools
Lists all tools available to the current agent from impl/, internal/, and MCP servers.
/mcp - Manage MCP servers
View and toggle enabled/disabled MCP servers interactively.
/memory - Edit user memory
Opens .langrepl/memory.md for custom instructions and preferences. Content is automatically injected into agent
prompts.
/skills - View available skills
Lists all skills available to the current agent with interactive selector. Skills are specialized knowledge packages that extend agent capabilities.
/graph [--browser] - Visualize agent graph
Renders in terminal (ASCII) or opens in browser with --browser flag.
/help - Show help
/exit - Exit application
Configs are auto-generated in .langrepl/ on first run.
.langrepl/agents/*.yml:
# agents/my-agent.yml (filename must match agent name)
version: 2.2.0
name: my-agent
prompt: prompts/my_agent.md # Single file or array of files
llm: haiku-4.5 # References llms/*.yml
checkpointer: sqlite # References checkpointers/*.yml
recursion_limit: 40
default: true
tools:
patterns:
- impl:file_system:read_file
- mcp:context7:resolve-library-id
use_catalog: false # Use tool catalog to reduce token usage
output_max_tokens: 10000 # Max tokens per tool output
skills:
patterns:
- general:skill-creator # References skills/<category>/<name>
subagents:
- general-purpose # References subagents/*.yml
compression:
auto_compress_enabled: true
auto_compress_threshold: 0.8
llm: haiku-4.5
prompt:
- prompts/shared/general_compression.md
- prompts/suffixes/environments.md
messages_to_keep: 0 # Keep N recent messages verbatim during compression
sandboxes: # See Sandboxes section
enabled: true
profiles:
- sandbox: rw-online-macos
patterns: [impl:*:*, "!impl:terminal:*"]
- sandbox: null # Bypass for excluded tools
patterns: [impl:terminal:*, mcp:*:*]Single-file format: .langrepl/config.agents.yml
agents:
- version: 2.2.0
name: my-agent
prompt: prompts/my_agent.md
llm: haiku-4.5
checkpointer: sqlite
recursion_limit: 40
default: true
tools:
patterns:
- impl:file_system:read_file
- mcp:context7:resolve-library-id
use_catalog: false # Use tool catalog to reduce token usage
output_max_tokens: 10000 # Max tokens per tool output
skills:
patterns:
- general:skill-creator # References skills/<category>/<name>
subagents:
- general-purpose
compression:
auto_compress_enabled: true
auto_compress_threshold: 0.8
llm: haiku-4.5
prompt:
- prompts/shared/general_compression.md
- prompts/suffixes/environments.md
messages_to_keep: 0 # Keep N recent messages verbatim during compressionTool naming: <category>:<module>:<function> with wildcard (*, ?, [seq]) and negative (!) pattern support
impl:*:*- All built-in toolsimpl:file_system:read_*- All read_* tools in file_system!impl:file_system:write_*- Exclude write_* toolsmcp:server:*- All tools from MCP server
Tool catalog: When use_catalog: true, impl/mcp tools are wrapped in a unified catalog interface to reduce token usage. The agent receives catalog tools instead of individual tool definitions.
Place prompts in .langrepl/prompts/:
# prompts/my_agent.md
You are a helpful assistant...
{user_memory}Placeholders:
{user_memory}- Auto-appended if missing{conversation}- Auto-wrapped if missing (compression prompts only)
.langrepl/llms/*.yml:
# llms/anthropic.yml (organize by provider, filename is flexible)
- version: 1.0.0
model: claude-haiku-4-5
alias: haiku-4.5
provider: anthropic
max_tokens: 10000
temperature: 0.1
context_window: 200000
input_cost_per_mtok: 1.00
output_cost_per_mtok: 5.00Single-file format: .langrepl/config.llms.yml
llms:
- version: 1.0.0
model: claude-haiku-4-5
alias: haiku-4.5
provider: anthropic
max_tokens: 10000
temperature: 0.1
context_window: 200000
input_cost_per_mtok: 1.00
output_cost_per_mtok: 5.00.langrepl/checkpointers/*.yml:
# checkpointers/sqlite.yml (filename must match checkpointer type)
version: 1.0.0
type: sqlite
max_connections: 10# checkpointers/memory.yml (filename must match checkpointer type)
version: 1.0.0
type: memory
max_connections: 1Single-file format: .langrepl/config.checkpointers.yml
checkpointers:
- version: 1.0.0
type: sqlite
max_connections: 10
- version: 1.0.0
type: memory
max_connections: 1Checkpointer types:
sqlite- Persistent SQLite-backed storage (default, stored in.langrepl/.db/checkpoints.db)memory- In-memory storage (ephemeral, lost on exit)
Sub-agents use the same config structure as main agents.
.langrepl/subagents/*.yml:
# subagents/code-reviewer.yml (filename must match subagent name)
version: 2.0.0
name: code-reviewer
prompt: prompts/code-reviewer.md
llm: haiku-4.5
tools:
patterns: [impl:file_system:read_file]
use_catalog: false
output_max_tokens: 10000Single-file format: .langrepl/config.subagents.yml
agents:
- version: 2.0.0
name: code-reviewer
prompt: prompts/code-reviewer.md
llm: haiku-4.5
tools:
patterns: [impl:file_system:read_file]
use_catalog: false
output_max_tokens: 10000Add custom: Create prompt, add config file, reference in parent agent's subagents list.
-
Implement in
src/langrepl/tools/impl/my_tool.py:from langchain.tools import tool @tool() def my_tool(query: str) -> str: """Tool description.""" return result
-
Register in
src/langrepl/tools/factory.py:MY_TOOLS = [my_tool] self.impl_tools.extend(MY_TOOLS)
-
Reference:
impl:my_tool:my_tool
Skills are modular knowledge packages that extend agent capabilities. See anthropics/skills for details.
Directory structure (.langrepl/skills/):
skills/
├── general/
│ └── skill-creator/
│ ├── SKILL.md # Required: metadata and instructions
│ ├── scripts/ # Optional: executable code
│ ├── references/ # Optional: documentation
│ └── assets/ # Optional: templates, images, etc.
└── custom-category/
└── my-skill/
└── SKILL.md
Skill naming: <category>:<name> with wildcard (*) and negative (!) pattern support
general:skill-creator- Specific skillgeneral:*- All skills in category!general:dangerous-skill- Exclude specific skill*:*- All skills
Built-in: skill-creator - Guide for creating custom skills
{
"mcpServers": {
"my-server": {
"command": "uvx",
"args": ["my-mcp-package"],
"transport": "stdio",
"enabled": true,
"stateful": false,
"include": ["tool1"],
"exclude": [],
"repair_command": ["rm", "-rf", ".some_cache"],
"repair_timeout": 30,
"invoke_timeout": 60.0
},
"remote-server": {
"url": "http://localhost:8080/mcp",
"transport": "http",
"timeout": 30,
"sse_read_timeout": 300,
"invoke_timeout": 60.0
}
}
}transport:stdio(local command),http(HTTP/streamable),sse(Server-Sent Events),websocket. Aliasesstreamable_httpandstreamable-httpmap tohttp.timeout,sse_read_timeout: Connection and SSE read timeouts in seconds (for HTTP-based transports)stateful: Keep connection alive between tool calls (default:false). Use for servers that need persistent state.repair_command: Command array to run if server fails (default: none). Auto-retries after repair.repair_timeout: Repair command timeout in seconds (default:30whenrepair_commandis set)invoke_timeout: Tool invocation timeout in seconds (default: none)- Suppress stderr:
"command": "sh", "args": ["-c", "npx pkg 2>/dev/null"] - Reference:
mcp:my-server:tool1 - Examples: useful-mcp-servers.json
{
"always_allow": [
{
"name": "read_file",
"args": null
},
{
"name": "run_command",
"args": "pwd"
}
],
"always_deny": [
{
"name": "run_command",
"args": "rm -rf /.*"
}
]
}Modes: SEMI_ACTIVE (ask unless whitelisted), ACTIVE (auto-approve except denied), AGGRESSIVE (bypass all)
Sandboxes provide secure, isolated execution environments for tools. They restrict filesystem access, network connectivity, and system calls to prevent potentially dangerous operations.
Prerequisites:
- macOS: Built-in
sandbox-exec(no installation needed) - Linux:
bubblewrappackage required (see Prerequisites)
.langrepl/sandboxes/*.yml:
# sandboxes/rw-online-macos.yml (filename must match sandbox name)
version: "1.0.0"
name: rw-online-macos
type: seatbelt # macOS: seatbelt, Linux: bubblewrap
os: macos # macos or linux
filesystem:
read:
- "." # Working directory
- "/usr" # System binaries
- "~/.local" # User tools (uvx, pipx)
write:
- "."
- "/private/tmp"
hidden: # Blocked paths (glob patterns)
- ".env"
- "~/.ssh"
- "*.pem"
network:
remote:
- "*" # "*" = allow all, [] = deny all
local: [] # Unix socketsDefault profiles (auto-copied per platform on first run):
| Profile | Filesystem | Network | Use Case |
|---|---|---|---|
rw-online-{os} |
Read/Write | Yes | General development |
rw-offline-{os} |
Read/Write | No | Sensitive data |
ro-online-{os} |
Read-only | Yes | Code exploration |
ro-offline-{os} |
Read-only | No | Maximum isolation |
Notes:
- Package managers:
uvx,npx,pipmay need network to check/download from registries. Default profiles include~/.cache/uv,~/.npm,~/.localfor caching. Offline sandboxes auto-injectNPM_CONFIG_OFFLINE=trueandUV_OFFLINE=1for MCP servers. - Docker/containers: Docker CLI requires socket access. Add to
network.local: Docker Desktop (/var/run/docker.sock), OrbStack (~/.orbstack/run/docker.sock), Rancher Desktop (~/.rd/docker.sock), Colima (~/.colima/default/docker.sock). - MCP servers: Sandboxed at startup (command wrapped). Match with
mcp:server-name:*(tool part must be*). HTTP servers require explicit bypass (sandbox: null). - Sandbox patterns: Support negative patterns. Use
!mcp:server:*to exclude from a wildcard match. Tools/servers must match exactly one profile or they're blocked. - Working directory (
"."): When included, mounted and used as cwd. When excluded: Linux = not mounted, cwd is/inside tmpfs; macOS = can list files but cannot read contents. - Symlinks: Symlinks resolving outside allowed boundaries are blocked. Warnings logged at startup. Add targets to
filesystem.readif needed.
Limitations:
- Network (remote): Binary -
["*"]allows all TCP/UDP,[]blocks all.["*"]reserved for future domain filtering. - Network (local): macOS = allowlist-based. Linux = binary (empty blocks all, any entry allows all); per-socket filtering reserved for future.
- macOS (Seatbelt): Deny-by-default policy. Mach services allowed for DNS, TLS, keychain.
- Linux (Bubblewrap): Namespace isolation (user, pid, ipc, uts, network).
pyseccompoptional for syscall blocking. - Other: Sandbox worker only executes built-in tools (from
langrepl.tools.*module). 60s timeout. 10MB stdout / 1MB stderr limits. Hidden patterns use gitignore-style glob.
For local development without global install:
git clone https://github.com/midodimori/langrepl.git
cd langrepl
make installRun from within repository:
uv run langrepl # Start interactive session
uv run langrepl -w /path # Specify working directory
uv run langrepl -s -a general # Start LangGraph serverDevelopment commands:
make install # Install dependencies + pre-commit hooks
make lint-fix # Format and lint code
make test # Run tests
make pre-commit # Run pre-commit on all files
make clean # Remove cache/build artifactsThis project is licensed under the MIT License - see the LICENSE file for details.