install.packages("devtools")
# Install NicEuc with vignettes
devtools::install_github("mghotbi/NicEuc", build_vignettes = TRUE)
To explore the full vignette in your browser:
# Open the vignette index in your browser
browseVignettes("NicEuc") # Opens browser-friendly vignette index
#OR
vignette("NicEuc-intro") # View in RStudio or Viewer
Ring -> Plot -> Cell hierarchy
Stratified sampling by photosynthetic pathway (C3 vs C4)
Spatial separation using a minimum distance
library(NicEuc)
library(sf)
library(spdep)
library(ggplot2)
library(leaflet)
library(dplyr)
library(utils)
The package includes synthetic_gps, a data frame with realistic spatial and taxonomic structure.
data("synthetic_gps", package = "NicEuc")
data("gps_ref", package = "NicEuc")
head(synthetic_gps)
library(dplyr)
NicEuc::gps_ref %>%
count(Species, Photosynthetic_Pathway, sort = TRUE)
Dynamic visualizations and Moran's I for spatial autocorrelation
# If you want to filter sampling by specific species:
target_species <- c(
"centella_asiatica",
"commelina_cyanea",
"fimbristylis_dichotoma",
"axonopus_fissifolius"
)
Sample 6 points per plot, with 0.4 m minimum spacing and stratification by C3/C4.
set.seed(123)
result <- suppressWarnings(generate_sampling_points(
gps_ref = synthetic_gps,
samples_per_plot = 6,
min_distance = 0.4,
target_species = target_species,
export_csv = FALSE
))
head(result$samples)
print(result$plot)
result$map
result$moran_test
Coordinates are reprojected from WGS84 to UTM Zone 56S (EPSG:32756).
Each plot is sampled independently and visualized in a faceted layout.
Sampling favors spatial separation while preserving C3/C4 balance.
If you use NicEuc in publications or reports, please cite the package.