This repository contains the code for the Gym Landing project, a web application for Zhengzhou University Gym. The project includes a frontend built with Next.js and a backend powered by FastAPI.
- Frontend: Built with React.js, Next.js, and SCSS for modular styling.
- Backend: Developed using FastAPI, featuring a chatbot powered by the LLaMA3 model.
- AI Chatbot: Provides gym-related assistance, including membership details and exercise guidance.
- Booking System: Book gym classes and manage your schedule.
- Fitness Dashboard: Track your daily and weekly fitness progress.
- AI Workout Plans: Generate personalized workout routines.
- Nutrition Plans: Get meal and nutrition recommendations.
- Authentication: Secure login and registration for users.
- Profile Management: View and manage your bookings and personal info.
- Responsive Design: Optimized for all devices.
- Dynamic Routing: User-friendly URLs via Next.js.
- Component-Based Architecture: Reusable components for maintainability and scalability.
LICENSE
project_analysis.txt
backend/
main.py
requirements.txt
frontend/
components/
Menu.jsx
spinner.jsx
bton.jsx
btonTop.jsx
chevron.js
logo.js
logoFull.js
seccion/
Inicio.jsx
Ofertas.jsx
Planes.jsx
Instructores.jsx
Imc.jsx
Contacto.jsx
about.jsx
pages/
_app.js
index.jsx
ai-chatbot.jsx
ai-workout-plans.jsx
booking.jsx
fitness-dashboard.jsx
nutrition-plans.jsx
profile.jsx
login.jsx
register.jsx
about.jsx
api/
hello.js
public/
ico.svg
hamim.jpg
ishfar.jpg
imgGym/
imc.jpg
inicio.jpg
logo.png
man.png
woman.png
imgTeam/
trainer1.jpg
trainer2.jpg
trainer3.jpg
trainer4.jpg
videosGym/
boxeo.mp4
cardio.mp4
fuerza.mp4
yoga.mp4
styles/
about.module.scss
aiWorkoutPlans.module.scss
booking.module.scss
btonTop.module.scss
chatbot.module.scss
contacto.module.scss
fitnessDashboard.module.scss
globals.css
imc.module.scss
inicio.module.scss
Instructores.module.scss
login.module.scss
menu.module.scss
nutritionPlans.module.scss
ofertas.module.scss
planes.module.scss
profile.module.scss
register.module.scss
spinner.module.scss
- API Endpoints:
/: Root endpoint for server status./chat: Handles user interactions with the AI chatbot.
- Technologies: Python, FastAPI, LLaMA3 model.
- Middleware: CORS middleware for cross-origin requests.
- Technologies: React.js, Next.js, SCSS.
- Key Pages:
index.jsx: Homepage with gym services, plans, instructors, and contact.ai-chatbot.jsx: Chat with the AI-powered gym assistant.ai-workout-plans.jsx: Get AI-generated workout plans.nutrition-plans.jsx: Personalized meal and nutrition plans.booking.jsx: Book gym classes.fitness-dashboard.jsx: Track fitness progress and activity.profile.jsx: Manage bookings and view user info.login.jsx®ister.jsx: User authentication.about.jsx: Info about the gym and founder.
- Reusable Components: Navigation menu, spinner, scroll-to-top button, modular homepage sections, and utility components (
bton.jsx,chevron.js,logo.js,logoFull.js). - Media Assets: Images (
hamim.jpg,ishfar.jpg,imgGym/,imgTeam/), and videos (videosGym/). - Styling: Each page/component has a corresponding SCSS module in
styles/for modular and maintainable styling.
- Node.js and npm
- Python 3.9+
-
Clone the repository:
git clone https://github.com/your-username/gym-landing.git cd gym-landing -
Install frontend dependencies:
cd frontend npm install -
Install backend dependencies:
cd ../backend pip install -r requirements.txt
-
Navigate to the
frontenddirectory:cd frontend -
Start the development server:
npm run dev
-
Open http://localhost:3000 in your browser.
-
Navigate to the
backenddirectory:cd backend -
Start the FastAPI server:
uvicorn main:app --reload
-
Access the API at http://localhost:8000.
- Frontend: Deployable on platforms like Vercel.
- Backend: Can be hosted on any server supporting Python and FastAPI.
This project is licensed under the MIT License. See the LICENSE file for details.
Contributions are welcome! Please open an issue or submit a pull request.
For inquiries, contact Ishfar Bin Rashid at hamimmd555@gmail.com.