Skip to content

marknhenry/Pdm_sequenceModels_Azure

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Predictive Maintenance using sequence models running on Azure

Read this details of the usecase on this link.

Prerequisites for this environment

  • Log on to Azure
  • Create a new Linux DSVM (Choose NC6 at least), this runs on GPU
  • Log in via putty (or something similar)
  • Run the following commands on the linux terminal
  • Open your jupyter server, upload the files and run them.

The following files are in this repo:

  1. First model with explanation of approach (01_pred_maintainance_LSTM_GPU.ipynb)

First attach to a terminal for connectivity issues:

tmux attach -t 0

Environment configuration, replace py36-mh with your environment name:

conda create -n py36-mh python=3.6
conda activate py36-mh
conda install numpy pandas matplotlib tensorflow-gpu keras h5py scikit-learn -y
conda install -c anaconda-nb-extensions nb_conda -y
conda install -c conda-forge jupyter_contrib_nbextensions -y
pip install azureml-sdk[notebooks]`
jupyter nbextension install --py --user azureml.train.widgets
jupyter nbextension enable --py --user azureml.train.widgets

Finally, register your kernel. Replace Python (py36-mh) with your kernel name

python -m ipykernel install --user --name py36-mh --display-name "Python (py36-mh)"

If you want to monitor GPU while training, use this command, it is on a loop to update every second:

nvidia-smi -l 1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published