Skip to content

madhavcsa/KBLDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KB-LDA

This is my implementation of the work [1]. For any questions regarding the work, please contact the original authors of the paper.

Setup:

To get the project's source code, clone the github repository:

$ git clone https://github.com/madhavcsa/KBLDA.git

Dependencies:

Please install the following dependencies for KBLDA to run: numpy, scipy, scikit-learn, joblib.

Usage:

To use kblda, you can start with these following samples commands:

 $ python KBLDA.py <TriplesFile> <CIFile> <NPFile> <VPFile>

Positional Arguments:

  • TriplesFile Enter the path to Triples File
  • CIFile Enter the path to Hearst Patterns File
  • NPFile Enter the path to file corresponding to Noun Phrases of Documents
  • VPFile Enter the path to file corresponding to Verb Phrases of Documents

Optional Arguments:

  • -h, --help show this help message and exit
  • --alpha_R ALPHA_R Enter the alpha for SVO
  • --alpha_O ALPHA_O Enter the alpha for Ontology
  • --alpha_D ALPHA_D Enter the alpha for Documents
  • --gamma_I GAMMA_I Enter the gamma for Noun phrases
  • --gamma_R GAMMA_R Enter the gamma for Verb Phrases
  • --K K Enter the number of Topics, default 100
  • --iters ITERS Enter the maximum number of iterations, default 2000
  • --Odir ODIR Enter the output directory to which the results will be saved
  • --sampling SAMPLING Enter seq for sequential and parallel for distributed; parallel is faster and is default choice
  • --Threads THREADS Enter number of threads

Refernce

[1] Dana Moshkovitz-Attias and William W. Cohen. Kb-lda: Jointly learning a knowledge base of hierarchy, relations, and facts. Proceedings of ACL, 2015.

About

Implementation of KBLDA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages