Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@ authors = ["Oskar Laverny"]

[deps]
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
HCubature = "19dc6840-f33b-545b-b366-655c7e3ffd49"
LambertW = "984bce1d-4616-540c-a9ee-88d1112d94c9"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LogExpFunctions = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
Expand All @@ -34,9 +34,10 @@ CopulasPlotsExt = ["Plots", "RecipesBase"]
[compat]
Aqua = "v0.8"
Combinatorics = "1"
DataStructures = "0.18.22"
Distributions = "0.25"
ForwardDiff = "0.10, 1"
HCubature = "1"
HCubature = "1.7.0"
HypothesisTests = "v0.11"
InteractiveUtils = "1"
LambertW = "1.0.0"
Expand All @@ -62,6 +63,7 @@ julia = "1"

[extras]
Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595"
HCubature = "19dc6840-f33b-545b-b366-655c7e3ffd49"
HypothesisTests = "09f84164-cd44-5f33-b23f-e6b0d136a0d5"
InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -70,4 +72,4 @@ StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Test", "InteractiveUtils", "LinearAlgebra", "HypothesisTests", "Aqua", "StableRNGs", "StatsBase"]
test = ["Test", "InteractiveUtils", "LinearAlgebra", "HypothesisTests", "Aqua", "StableRNGs", "StatsBase", "HCubature"]
8 changes: 7 additions & 1 deletion src/ArchimedeanCopula.jl
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,13 @@ ArchimedeanCopula{D,TG}(d::Int, args...; kwargs...) where {D, TG} = ArchimedeanC

Distributions.params(C::ArchimedeanCopula) = Distributions.params(C.G) # by default the parameter is the generator's parameters.

_cdf(C::ArchimedeanCopula, u) = ϕ(C.G, sum(ϕ⁻¹.(C.G, u)))
function _cdf(C::ArchimedeanCopula, u)
r = zero(eltype(u))
for uᵢ in u
r += ϕ⁻¹(C.G, uᵢ)
end
return ϕ(C.G, r)
end
function Distributions._logpdf(C::ArchimedeanCopula{d,TG}, u) where {d,TG}
if !all(0 .< u .< 1)
return eltype(u)(-Inf)
Expand Down
3 changes: 2 additions & 1 deletion src/Copulas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ module Copulas
import StatsBase
import StatsFuns
import ForwardDiff
import HCubature
# import HCubature
import MvNormalCDF
import Combinatorics
import LogExpFunctions
Expand All @@ -22,6 +22,7 @@ module Copulas
import TaylorSeries

# Main code
include("hcubature.jl") # internal replacement for HCubature.jl
include("utils.jl")
include("Copula.jl")
include("SklarDist.jl")
Expand Down
3 changes: 1 addition & 2 deletions src/Generator/GumbelGenerator.jl
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,7 @@ end

function _cdf(C::ArchimedeanCopula{d,G}, u) where {d, G<:GumbelGenerator}
θ = C.G.θ
lx = log.(.-log.(u))
return 1 - LogExpFunctions.cexpexp(LogExpFunctions.logsumexp(θ .* lx) ./ θ)
return 1 - LogExpFunctions.cexpexp(LogExpFunctions.logsumexp(θ .* log.(.-log.(u)))/θ)
end
function Distributions._logpdf(C::ArchimedeanCopula{2,GumbelGenerator{TF}}, u) where {TF}
T = promote_type(TF, eltype(u))
Expand Down
6 changes: 5 additions & 1 deletion src/MiscellaneousCopulas/FGMCopula.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,11 @@ function _fgm_red(θ, v)
rez, d, i = zero(eltype(v)), length(v), 1
for k in 2:d
for indices in Combinatorics.combinations(1:d, k)
rez += θ[i] * prod(v[indices])
r = one(eltype(v))
for i in indices
r *= v[i]
end
rez += θ[i] * r
i = i+1
end
end
Expand Down
5 changes: 4 additions & 1 deletion src/MiscellaneousCopulas/RafteryCopula.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,10 @@ function _cdf(R::RafteryCopula{d,P}, u) where {d,P}
term2 = (1 - R.θ) * (1 - d) / (1 - R.θ - d) * prod(u).^(1/(1 - R.θ))
term3 = 0.0
for i in 2:d
prod_prev = prod(u_ordered[1:i-1])
prod_prev = one(eltype(u))
for j in 1:i-1
prod_prev *= u_ordered[j]
end
term3_part = R.θ * (1 - R.θ) / ((1 - R.θ - i) * (2 - R.θ - i)) * prod_prev^(1/(1 - R.θ)) * u_ordered[i]^((2 - R.θ - i) / (1 - R.θ))
term3 += term3_part
end
Expand Down
270 changes: 270 additions & 0 deletions src/hcubature.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,270 @@
module HCubature

using LinearAlgebra: norm
import Combinatorics, DataStructures

export hcubature

# Minimal n-dimensional (n ≥ 2) Genz–Malik adaptive cubature using standard Arrays.
# Stripped-down version of https://github.com/JuliaMath/HCubature.jl, they get the credit (MIT licensed)


# Build direction vectors for the Genz–Malik rule (as ordinary vectors)
function _combos(n::Integer, k::Integer, λ::T) where {T<:Real}
idxs = Combinatorics.combinations(1:n, k)
pts = Vector{NTuple{n,T}}(undef, length(idxs))
@inbounds for (i, c) in enumerate(idxs)
v = fill(zero(T), n)
for j in c
v[j] = λ
end
pts[i] = Tuple(v)
end
return pts
end

function _signcombos(n::Integer, k::Integer, λ::T) where {T<:Real}
idxs = Combinatorics.combinations(1:n, k)
twoᵏ = 1 << k
pts = Vector{NTuple{n,T}}(undef, length(idxs) * twoᵏ)
out = 1
@inbounds for c in idxs
v = fill(zero(T), n)
for j in c
v[j] = λ
end
pts[out] = Tuple(v)
# use gray code to flip one sign at a time
gray = 0
for s = 1:twoᵏ-1
gray′ = s ⊻ (s >> 1)
flip_idx = c[trailing_zeros(gray ⊻ gray′) + 1]
gray = gray′
v[flip_idx] = -v[flip_idx]
pts[out + s] = Tuple(v)
end
out += twoᵏ
end
return pts
end

struct GenzMalik{n,T<:Real}
p::NTuple{4,Vector{NTuple{n,T}}} # direction points as tuples
w::NTuple{5,T}
w′::NTuple{4,T}
end

const _gm_cache = Dict{Tuple{Int,DataType}, Any}()
const _gm_lock = ReentrantLock()

function _GenzMalik(n::Int, ::Type{T}=Float64) where {T<:Real}
n < 2 && throw(ArgumentError("invalid dimension $n: Genz–Malik requires n ≥ 2"))

λ₄ = sqrt(T(9)/T(10))
λ₂ = sqrt(T(9)/T(70))
λ₃ = λ₄
λ₅ = sqrt(T(9)/T(19))

twoⁿ = T(1) * (1 << n)
w₁ = twoⁿ * ((T(12824) - T(9120)*n + T(400)*n^2) / T(19683))
w₂ = twoⁿ * (T(980) / T(6561))
w₃ = twoⁿ * ((T(1820) - T(400)*n) / T(19683))
w₄ = twoⁿ * (T(200) / T(19683))
w₅ = T(6859)/T(19683)
w₄′ = twoⁿ * (T(25)/T(729))
w₃′ = twoⁿ * ((T(265) - T(100)*n)/T(1458))
w₂′ = twoⁿ * (T(245)/T(486))
w₁′ = twoⁿ * ((T(729) - T(950)*n + T(50)*n^2)/T(729))

p₂ = _combos(n, 1, λ₂)
p₃ = _combos(n, 1, λ₃)
p₄ = _signcombos(n, 2, λ₄)
p₅ = _signcombos(n, n, λ₅)

return GenzMalik{n,T}((p₂, p₃, p₄, p₅), (w₁, w₂, w₃, w₄, w₅), (w₁′, w₂′, w₃′, w₄′))
end

function get_rule(n::Int, ::Type{T}=Float64) where {T<:Real}
lock(_gm_lock)
try
key = (n, T)
haskey(_gm_cache, key) && return _gm_cache[key]::GenzMalik{n,T}
g = _GenzMalik(n, T)
_gm_cache[key] = g
return g
finally
unlock(_gm_lock)
end
end

countevals(::GenzMalik{n}) where {n} = 1 + 4n + 2n*(n-1) + (1 << n)

function _eval_rule(g::GenzMalik{n,Tg}, f, a::AbstractVector{Ta}, b::AbstractVector{Ta}, normfun) where {n,Tg<:Real,Ta<:Real}
T = promote_type(Tg, Ta)
c = (T.(a) .+ T.(b)) .* (T(0.5))
Δ = (T.(b) .- T.(a)) .* (T(0.5))
V = prod(Δ)

f₁ = f(c)
f₂ = zero(f₁)
f₃ = zero(f₁)
twelvef₁ = f₁ * T(12)
maxdivdiff = zero(normfun(f₁))
divdiff = Vector{typeof(maxdivdiff)}(undef, n)
# scratch vectors to avoid allocations when evaluating f at shifted points
cplus = similar(c)
cminus = similar(c)
@inbounds for i in 1:n
# compute c ± Δ .* p₂
p2i = g.p[1][i]
for j in 1:n
t = Δ[j] * p2i[j]
cplus[j] = c[j] + t
cminus[j] = c[j] - t
end
f₂ᵢ = f(cplus) + f(cminus)
# compute c ± Δ .* p₃
p3i = g.p[2][i]
for j in 1:n
t = Δ[j] * p3i[j]
cplus[j] = c[j] + t
cminus[j] = c[j] - t
end
f₃ᵢ = f(cplus) + f(cminus)
f₂ += f₂ᵢ
f₃ += f₃ᵢ
dd = normfun(f₃ᵢ + twelvef₁ - (f₂ᵢ * T(7)))
divdiff[i] = dd
if dd > maxdivdiff
maxdivdiff = dd
end
end

f₄ = zero(f₁)
@inbounds for p in g.p[3]
for j in 1:n
cplus[j] = c[j] + Δ[j] * p[j]
end
f₄ += f(cplus)
end

f₅ = zero(f₁)
@inbounds for p in g.p[4]
for j in 1:n
cplus[j] = c[j] + Δ[j] * p[j]
end
f₅ += f(cplus)
end

I = V * (g.w[1]*f₁ + g.w[2]*f₂ + g.w[3]*f₃ + g.w[4]*f₄ + g.w[5]*f₅)
I′ = V * (g.w′[1]*f₁ + g.w′[2]*f₂ + g.w′[3]*f₃ + g.w′[4]*f₄)
E = normfun(I - I′)

# choose axis
kdivide = 1
δf = E / (T(10)^n * V)
for i in 1:n
δ = divdiff[i] - maxdivdiff
if δ > δf
kdivide = i
maxdivdiff = divdiff[i]
elseif abs(δ) <= δf && abs(Δ[i]) > abs(Δ[kdivide])
kdivide = i
end
end

return I, E, kdivide
end

struct Box{T<:Real, TI<:Real}
a::Vector{T}
b::Vector{T}
I::TI # integral value (scalar)
E::Float64 # error estimate as a real scalar
kdiv::Int
end
Base.isless(i::Box, j::Box) = i.E < j.E

function _hcubature(f, a::Vector{T}, b::Vector{T};
norm::Function=norm, rtol::Real=0, atol::Real=0,
maxevals::Integer=typemax(Int), initdiv::Integer=1) where {T<:Real}
length(a) == length(b) || throw(DimensionMismatch("endpoints must have same length"))
n = length(a)
n >= 2 || throw(ArgumentError("hcubature requires n ≥ 2; got n=$n"))
F = float(T)
g = get_rule(n, F)

# Determine scalar integral type once by probing integrand at the midpoint
mid = (F.(a) .+ F.(b)) .* F(0.5)
TI = typeof(f(mid))

# evaluation counter
calls = Ref(0)
fcount(x) = (calls[] += 1; f(x))

# initial boxes: by default just one box; initdiv>1 splits uniformly
split_points = [range(a[i], b[i], length=initdiv+1) for i in 1:n]
heap = DataStructures.BinaryMaxHeap{Box{F,TI}}()

# running totals
Itot = zero(TI)
Etot = 0.0

# iterate over all subboxes
function push_box(a₀, b₀)
I, E, k = _eval_rule(g, fcount, a₀, b₀, norm)
Ii = convert(TI, I)
Ee = float(E)
DataStructures.push!(heap, Box{F,TI}(a₀, b₀, Ii, Ee, k))
return Ii, Ee
end

# generate Cartesian product of intervals
function _build_boxes(i::Int, acc_a, acc_b)
if i > n
Ii, Ee = push_box(copy(acc_a), copy(acc_b))
Itot += Ii
Etot += Ee
return
end
for j in 1:initdiv
acc_a[i] = F(split_points[i][j])
acc_b[i] = F(split_points[i][j+1])
_build_boxes(i+1, acc_a, acc_b)
end
end
_build_boxes(1, zeros(F, n), zeros(F, n))

# default rtol if not specified
if rtol == 0
rtol = sqrt(eps(F))
end

# refine until tolerance or maxevals reached
while Etot > max(atol, rtol*norm(Itot)) && calls[] + countevals(g) <= maxevals
box = DataStructures.pop!(heap) # largest E
# remove its contribution
Itot -= box.I
Etot -= box.E
# split along kdiv
k = box.kdiv
mid = F(0.5) * (box.a[k] + box.b[k])
a1 = copy(box.a); b1 = copy(box.b); b1[k] = mid
a2 = copy(box.a); a2[k] = mid; b2 = copy(box.b)
I1, E1 = push_box(a1, b1)
I2, E2 = push_box(a2, b2)
# add contributions
Itot += I1 + I2
Etot += E1 + E2
end

return (Itot, Etot)
end

function hcubature(f, a, b; norm=norm, rtol::Real=0, atol::Real=0,
maxevals::Integer=typemax(Int), initdiv::Integer=1)
F = float(promote_type(eltype(a), eltype(b)))
return _hcubature(f, collect(F.(a)), collect(F.(b)); norm=norm, rtol=rtol, atol=atol, maxevals=maxevals, initdiv=initdiv)
end

end # module HCubature
Loading