Python efficient farthest point sampling (FPS) library, 100x faster than numpy implementation.
fpsample is coupled with numpy and built upon Rust pyo3 bindings. This library aims at achieving the best performance for FPS in single-threaded CPU environment.
๐ PyTorch version with native multithreading, batch ops, Autograd and CUDA supports is in pytorch_fpsample.
numpy>=1.16.0 is required. Install fpsample using pip:
pip install -U fpsampleIf you encounter any installation errors, please make an issue and try to compile from source.
Since Version 1.0.0, fpsample is built using Scikit-build-core + pybind11. Therefore, you can build and install this library from source just with pip.
C++ compiler must support C++17.
CMake>=3.15 is required.
git clone https://github.com/leonardodalinky/fpsample.git
cd fpsample
pip install .See src/warpper.hpp and src/_ext/ for details.
import fpsample
import numpy as np
# Generate random point cloud
pc = np.random.rand(4096, 3)
## sample 1024 points
# Vanilla FPS
fps_samples_idx = fpsample.fps_sampling(pc, 1024)
# FPS + NPDU
fps_npdu_samples_idx = fpsample.fps_npdu_sampling(pc, 1024)
## or specify the windows size
fps_npdu_samples_idx = fpsample.fps_npdu_sampling(pc, 1024, w=64)
# FPS + NPDU + KDTree
fps_npdu_kdtree_samples_idx = fpsample.fps_npdu_kdtree_sampling(pc, 1024)
## or specify the windows size
fps_npdu_kdtree_samples_idx = fpsample.fps_npdu_kdtree_sampling(pc, 1024, w=64)
# KDTree-based FPS
kdtree_fps_samples_idx = fpsample.bucket_fps_kdtree_sampling(pc, 1024)
# NOTE: Probably the best
# Bucket-based FPS or QuickFPS
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(pc, 1024, h=3)FPS: Vanilla farthest point sampling. Implemented in Rust. Achieve the same performance asnumpy.FPS + NPDU: Farthest point sampling with nearest-point-distance-updating (NPDU) heuristic strategy. 5x~10x faster than vanilla FPS. Require dimensional locality and give sub-optimal answers.FPS + NPDU + KDTree: Farthest point sampling with NPDU heuristic strategy and KDTree. 3x~8x faster than vanilla FPS. Slightly slower thanFPS + NPDU. But DOES NOT require dimensional locality.KDTree-based FPS: A farthest point sampling algorithm based on KDTree. About 40~50x faster than vanilla FPS.Bucket-based FPSorQuickFPS: A bucket-based farthest point sampling algorithm. About 80~100x faster than vanilla FPS. Require an additional hyperparameter for the height of the KDTree. In practice,h=3orh=5is recommended for small data,h=7is recommended for medium data, andh=9for extremely large data.
NOTE: ๐ฅ In most cases,
Bucket-based FPSis the best choice, with proper hyperparameter setting.
For deterministic results, fix the first sampled point index by passing the start_idx parameter.
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(pc, 1024, h=3, start_idx=0)OR set the random seed before calling the function.
np.random.seed(42)Install dependencies:
uv syncSetup:
- CPU: Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz
- RAM: 512 GiB
- SYSTEM: Ubuntu 20.04.6 LTS
Run benchmark:
py.test bench/ --benchmark-columns=mean,stddev --benchmark-sort=meanResults:
------------------------------------------------------------------------------- benchmark '1024 of 4096': 8 tests -------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bucket_fps_kdline_4k_h5 1.7892 (1.0) 2.2010 (1.01) 1.8301 (1.0) 0.0273 (1.20) 1.8255 (1.0) 0.0182 (1.0) 53;31 546.4295 (1.0) 491 1
test_bucket_fps_kdline_4k_h3 2.0452 (1.14) 2.1714 (1.0) 2.0862 (1.14) 0.0227 (1.0) 2.0817 (1.14) 0.0220 (1.21) 99;34 479.3375 (0.88) 436 1
test_bucket_fps_kdline_4k_h7 3.0348 (1.70) 3.2599 (1.50) 3.1082 (1.70) 0.0391 (1.72) 3.1005 (1.70) 0.0568 (3.12) 107;4 321.7322 (0.59) 306 1
test_fps_npdu_4k 3.9024 (2.18) 4.3511 (2.00) 3.9514 (2.16) 0.0395 (1.74) 3.9457 (2.16) 0.0283 (1.55) 29;14 253.0768 (0.46) 245 1
test_bucket_fps_kdtree_4k 6.5697 (3.67) 7.3863 (3.40) 6.7525 (3.69) 0.1150 (5.07) 6.7240 (3.68) 0.0926 (5.08) 26;11 148.0923 (0.27) 126 1
test_fps_npdu_kdtree_4k 9.4114 (5.26) 9.7609 (4.50) 9.4979 (5.19) 0.0613 (2.70) 9.4807 (5.19) 0.0362 (1.99) 14;13 105.2866 (0.19) 97 1
test_vanilla_fps_4k 12.3702 (6.91) 12.8378 (5.91) 12.5875 (6.88) 0.1840 (8.11) 12.5024 (6.85) 0.3712 (20.38) 40;0 79.4438 (0.15) 77 1
test_vanilla_fps_4k_multiple 12.4058 (6.93) 13.2153 (6.09) 12.4706 (6.81) 0.1639 (7.22) 12.4139 (6.80) 0.0268 (1.47) 7;12 80.1886 (0.15) 80 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------- benchmark '4096 of 50000': 7 tests --------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bucket_fps_kdline_50k_h7 24.7285 (1.0) 25.2791 (1.0) 25.0179 (1.0) 0.1237 (1.0) 25.0139 (1.0) 0.1184 (1.0) 10;3 39.9714 (1.0) 40 1
test_bucket_fps_kdline_50k_h5 31.7191 (1.28) 32.9791 (1.30) 32.1800 (1.29) 0.3308 (2.68) 32.0584 (1.28) 0.3701 (3.13) 6;3 31.0752 (0.78) 31 1
test_bucket_fps_kdline_50k_h3 66.7806 (2.70) 67.5433 (2.67) 67.1429 (2.68) 0.2265 (1.83) 67.0898 (2.68) 0.2654 (2.24) 5;0 14.8936 (0.37) 15 1
test_bucket_fps_kdtree_50k 82.7767 (3.35) 85.9608 (3.40) 84.5684 (3.38) 0.9575 (7.74) 84.5108 (3.38) 1.2572 (10.62) 3;0 11.8248 (0.30) 11 1
test_fps_npdu_50k 179.8323 (7.27) 181.9054 (7.20) 180.5911 (7.22) 0.7326 (5.92) 180.4329 (7.21) 0.7742 (6.54) 2;0 5.5374 (0.14) 6 1
test_fps_npdu_kdtree_50k 253.4978 (10.25) 255.2537 (10.10) 254.2810 (10.16) 0.7408 (5.99) 253.9220 (10.15) 1.1832 (9.99) 2;0 3.9327 (0.10) 5 1
test_vanilla_fps_50k 592.6405 (23.97) 594.1419 (23.50) 593.2049 (23.71) 0.5970 (4.83) 593.2359 (23.72) 0.7815 (6.60) 1;0 1.6858 (0.04) 5 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------- benchmark '50000 of 100000': 7 tests ---------------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bucket_fps_kdline_100k_h7 232.5230 (1.0) 234.3285 (1.0) 233.3726 (1.0) 0.7632 (1.49) 233.5817 (1.0) 1.2734 (1.66) 2;0 4.2850 (1.0) 5 1
test_bucket_fps_kdtree_100k 381.3098 (1.64) 388.0433 (1.66) 384.0891 (1.65) 3.5171 (6.84) 382.9141 (1.64) 5.0501 (6.56) 1;0 2.6036 (0.61) 3 1
test_bucket_fps_kdline_100k_h9 409.0352 (1.76) 420.7832 (1.80) 414.3774 (1.78) 5.9458 (11.57) 413.3137 (1.77) 8.8110 (11.45) 1;0 2.4133 (0.56) 3 1
test_bucket_fps_kdline_100k_h5 410.1506 (1.76) 411.1764 (1.75) 410.6451 (1.76) 0.5139 (1.0) 410.6085 (1.76) 0.7693 (1.0) 1;0 2.4352 (0.57) 3 1
test_fps_npdu_kdtree_100k 3,134.7921 (13.48) 3,137.0544 (13.39) 3,135.7064 (13.44) 1.1919 (2.32) 3,135.2726 (13.42) 1.6967 (2.21) 1;0 0.3189 (0.07) 3 1
test_fps_npdu_100k 4,325.4402 (18.60) 4,341.7247 (18.53) 4,333.3156 (18.57) 8.1554 (15.87) 4,332.7821 (18.55) 12.2134 (15.87) 1;0 0.2308 (0.05) 3 1
test_vanilla_fps_100k 14,460.2331 (62.19) 14,664.4396 (62.58) 14,561.1574 (62.39) 102.1237 (198.73) 14,558.7995 (62.33) 153.1549 (199.07) 1;0 0.0687 (0.02) 3 1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The nearest-point-distance-updating (NPDU) heuristic strategy is proposed in the following paper:
@INPROCEEDINGS{Li2022adjust,
author={Li, Jingtao and Zhou, Jian and Xiong, Yan and Chen, Xing and Chakrabarti, Chaitali},
booktitle={2022 IEEE Workshop on Signal Processing Systems (SiPS)},
title={An Adjustable Farthest Point Sampling Method for Approximately-sorted Point Cloud Data},
year={2022},
volume={},
number={},
pages={1-6},
doi={10.1109/SiPS55645.2022.9919246}
}Bucket-based farthest point sampling (QuickFPS) is proposed in the following paper. The implementation is based on the author's Repo. To port the implementation to other C++ program, check this for details.
@article{han2023quickfps,
title={QuickFPS: Architecture and Algorithm Co-Design for Farthest Point Sampling in Large-Scale Point Clouds},
author={Han, Meng and Wang, Liang and Xiao, Limin and Zhang, Hao and Zhang, Chenhao and Xu, Xiangrong and Zhu, Jianfeng},
journal={IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},
year={2023},
publisher={IEEE}
}The KDTree-based NN search algorithm implemented by nanoflann
Thanks to the authors for their great work.