Skip to content

leonardodalinky/fpsample

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

46 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

fpsample

pypi package version badge python version badge license badge star badge

Python efficient farthest point sampling (FPS) library, 100x faster than numpy implementation.

fpsample is coupled with numpy and built upon Rust pyo3 bindings. This library aims at achieving the best performance for FPS in single-threaded CPU environment.

๐ŸŽ‰ PyTorch version with native multithreading, batch ops, Autograd and CUDA supports is in pytorch_fpsample.

Installation

Install from PyPI

numpy>=1.16.0 is required. Install fpsample using pip:

pip install -U fpsample

If you encounter any installation errors, please make an issue and try to compile from source.

Build from source

Since Version 1.0.0, fpsample is built using Scikit-build-core + pybind11. Therefore, you can build and install this library from source just with pip.

C++ compiler must support C++17.

CMake>=3.15 is required.

git clone https://github.com/leonardodalinky/fpsample.git
cd fpsample
pip install .

Direct porting of QuickFPS

See src/warpper.hpp and src/_ext/ for details.

Usage

import fpsample
import numpy as np

# Generate random point cloud
pc = np.random.rand(4096, 3)
## sample 1024 points

# Vanilla FPS
fps_samples_idx = fpsample.fps_sampling(pc, 1024)

# FPS + NPDU
fps_npdu_samples_idx = fpsample.fps_npdu_sampling(pc, 1024)
## or specify the windows size
fps_npdu_samples_idx = fpsample.fps_npdu_sampling(pc, 1024, w=64)

# FPS + NPDU + KDTree
fps_npdu_kdtree_samples_idx = fpsample.fps_npdu_kdtree_sampling(pc, 1024)
## or specify the windows size
fps_npdu_kdtree_samples_idx = fpsample.fps_npdu_kdtree_sampling(pc, 1024, w=64)

# KDTree-based FPS
kdtree_fps_samples_idx = fpsample.bucket_fps_kdtree_sampling(pc, 1024)

# NOTE: Probably the best
# Bucket-based FPS or QuickFPS
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(pc, 1024, h=3)
  • FPS: Vanilla farthest point sampling. Implemented in Rust. Achieve the same performance as numpy.
  • FPS + NPDU: Farthest point sampling with nearest-point-distance-updating (NPDU) heuristic strategy. 5x~10x faster than vanilla FPS. Require dimensional locality and give sub-optimal answers.
  • FPS + NPDU + KDTree: Farthest point sampling with NPDU heuristic strategy and KDTree. 3x~8x faster than vanilla FPS. Slightly slower than FPS + NPDU. But DOES NOT require dimensional locality.
  • KDTree-based FPS: A farthest point sampling algorithm based on KDTree. About 40~50x faster than vanilla FPS.
  • Bucket-based FPS or QuickFPS: A bucket-based farthest point sampling algorithm. About 80~100x faster than vanilla FPS. Require an additional hyperparameter for the height of the KDTree. In practice, h=3 or h=5 is recommended for small data, h=7 is recommended for medium data, and h=9 for extremely large data.

NOTE: ๐Ÿ”ฅ In most cases, Bucket-based FPS is the best choice, with proper hyperparameter setting.

Determinism

For deterministic results, fix the first sampled point index by passing the start_idx parameter.

kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(pc, 1024, h=3, start_idx=0)

OR set the random seed before calling the function.

np.random.seed(42)

Development

Install dependencies:

uv sync

Performance

Setup:

  • CPU: Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz
  • RAM: 512 GiB
  • SYSTEM: Ubuntu 20.04.6 LTS

Run benchmark:

py.test bench/ --benchmark-columns=mean,stddev --benchmark-sort=mean

Results:

------------------------------------------------------------------------------- benchmark '1024 of 4096': 8 tests -------------------------------------------------------------------------------
Name (time in ms)                    Min                Max               Mean            StdDev             Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bucket_fps_kdline_4k_h5      1.7892 (1.0)       2.2010 (1.01)      1.8301 (1.0)      0.0273 (1.20)      1.8255 (1.0)      0.0182 (1.0)         53;31  546.4295 (1.0)         491           1
test_bucket_fps_kdline_4k_h3      2.0452 (1.14)      2.1714 (1.0)       2.0862 (1.14)     0.0227 (1.0)       2.0817 (1.14)     0.0220 (1.21)        99;34  479.3375 (0.88)        436           1
test_bucket_fps_kdline_4k_h7      3.0348 (1.70)      3.2599 (1.50)      3.1082 (1.70)     0.0391 (1.72)      3.1005 (1.70)     0.0568 (3.12)        107;4  321.7322 (0.59)        306           1
test_fps_npdu_4k                  3.9024 (2.18)      4.3511 (2.00)      3.9514 (2.16)     0.0395 (1.74)      3.9457 (2.16)     0.0283 (1.55)        29;14  253.0768 (0.46)        245           1
test_bucket_fps_kdtree_4k         6.5697 (3.67)      7.3863 (3.40)      6.7525 (3.69)     0.1150 (5.07)      6.7240 (3.68)     0.0926 (5.08)        26;11  148.0923 (0.27)        126           1
test_fps_npdu_kdtree_4k           9.4114 (5.26)      9.7609 (4.50)      9.4979 (5.19)     0.0613 (2.70)      9.4807 (5.19)     0.0362 (1.99)        14;13  105.2866 (0.19)         97           1
test_vanilla_fps_4k              12.3702 (6.91)     12.8378 (5.91)     12.5875 (6.88)     0.1840 (8.11)     12.5024 (6.85)     0.3712 (20.38)        40;0   79.4438 (0.15)         77           1
test_vanilla_fps_4k_multiple     12.4058 (6.93)     13.2153 (6.09)     12.4706 (6.81)     0.1639 (7.22)     12.4139 (6.80)     0.0268 (1.47)         7;12   80.1886 (0.15)         80           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------- benchmark '4096 of 50000': 7 tests --------------------------------------------------------------------------------
Name (time in ms)                      Min                 Max                Mean            StdDev              Median               IQR            Outliers      OPS            Rounds  Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bucket_fps_kdline_50k_h7      24.7285 (1.0)       25.2791 (1.0)       25.0179 (1.0)      0.1237 (1.0)       25.0139 (1.0)      0.1184 (1.0)          10;3  39.9714 (1.0)          40           1
test_bucket_fps_kdline_50k_h5      31.7191 (1.28)      32.9791 (1.30)      32.1800 (1.29)     0.3308 (2.68)      32.0584 (1.28)     0.3701 (3.13)          6;3  31.0752 (0.78)         31           1
test_bucket_fps_kdline_50k_h3      66.7806 (2.70)      67.5433 (2.67)      67.1429 (2.68)     0.2265 (1.83)      67.0898 (2.68)     0.2654 (2.24)          5;0  14.8936 (0.37)         15           1
test_bucket_fps_kdtree_50k         82.7767 (3.35)      85.9608 (3.40)      84.5684 (3.38)     0.9575 (7.74)      84.5108 (3.38)     1.2572 (10.62)         3;0  11.8248 (0.30)         11           1
test_fps_npdu_50k                 179.8323 (7.27)     181.9054 (7.20)     180.5911 (7.22)     0.7326 (5.92)     180.4329 (7.21)     0.7742 (6.54)          2;0   5.5374 (0.14)          6           1
test_fps_npdu_kdtree_50k          253.4978 (10.25)    255.2537 (10.10)    254.2810 (10.16)    0.7408 (5.99)     253.9220 (10.15)    1.1832 (9.99)          2;0   3.9327 (0.10)          5           1
test_vanilla_fps_50k              592.6405 (23.97)    594.1419 (23.50)    593.2049 (23.71)    0.5970 (4.83)     593.2359 (23.72)    0.7815 (6.60)          1;0   1.6858 (0.04)          5           1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- benchmark '50000 of 100000': 7 tests ---------------------------------------------------------------------------------------
Name (time in ms)                          Min                    Max                   Mean              StdDev                 Median                 IQR            Outliers     OPS            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bucket_fps_kdline_100k_h7        232.5230 (1.0)         234.3285 (1.0)         233.3726 (1.0)        0.7632 (1.49)        233.5817 (1.0)        1.2734 (1.66)          2;0  4.2850 (1.0)           5           1
test_bucket_fps_kdtree_100k           381.3098 (1.64)        388.0433 (1.66)        384.0891 (1.65)       3.5171 (6.84)        382.9141 (1.64)       5.0501 (6.56)          1;0  2.6036 (0.61)          3           1
test_bucket_fps_kdline_100k_h9        409.0352 (1.76)        420.7832 (1.80)        414.3774 (1.78)       5.9458 (11.57)       413.3137 (1.77)       8.8110 (11.45)         1;0  2.4133 (0.56)          3           1
test_bucket_fps_kdline_100k_h5        410.1506 (1.76)        411.1764 (1.75)        410.6451 (1.76)       0.5139 (1.0)         410.6085 (1.76)       0.7693 (1.0)           1;0  2.4352 (0.57)          3           1
test_fps_npdu_kdtree_100k           3,134.7921 (13.48)     3,137.0544 (13.39)     3,135.7064 (13.44)      1.1919 (2.32)      3,135.2726 (13.42)      1.6967 (2.21)          1;0  0.3189 (0.07)          3           1
test_fps_npdu_100k                  4,325.4402 (18.60)     4,341.7247 (18.53)     4,333.3156 (18.57)      8.1554 (15.87)     4,332.7821 (18.55)     12.2134 (15.87)         1;0  0.2308 (0.05)          3           1
test_vanilla_fps_100k              14,460.2331 (62.19)    14,664.4396 (62.58)    14,561.1574 (62.39)    102.1237 (198.73)   14,558.7995 (62.33)    153.1549 (199.07)        1;0  0.0687 (0.02)          3           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Reference

The nearest-point-distance-updating (NPDU) heuristic strategy is proposed in the following paper:

@INPROCEEDINGS{Li2022adjust,
  author={Li, Jingtao and Zhou, Jian and Xiong, Yan and Chen, Xing and Chakrabarti, Chaitali},
  booktitle={2022 IEEE Workshop on Signal Processing Systems (SiPS)},
  title={An Adjustable Farthest Point Sampling Method for Approximately-sorted Point Cloud Data},
  year={2022},
  volume={},
  number={},
  pages={1-6},
  doi={10.1109/SiPS55645.2022.9919246}
}

Bucket-based farthest point sampling (QuickFPS) is proposed in the following paper. The implementation is based on the author's Repo. To port the implementation to other C++ program, check this for details.

@article{han2023quickfps,
  title={QuickFPS: Architecture and Algorithm Co-Design for Farthest Point Sampling in Large-Scale Point Clouds},
  author={Han, Meng and Wang, Liang and Xiao, Limin and Zhang, Hao and Zhang, Chenhao and Xu, Xiangrong and Zhu, Jianfeng},
  journal={IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},
  year={2023},
  publisher={IEEE}
}

The KDTree-based NN search algorithm implemented by nanoflann

Thanks to the authors for their great work.

About

Python efficient farthest point sampling (FPS) library. Compatible with numpy.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •