Skip to content

On the Adversarial Robustness of Visual-Language Chat Models (ICMR 2025)

License

Notifications You must be signed in to change notification settings

lafeat/m3-break

Repository files navigation

On the Adversarial Robustness of Visual-Language Chat Models

Introdution

This is the official repository of our ICMR 2025 paper "On the Adversarial Robustness of Visual-Language Chat Models"

Requirements

  • Install required python packages:
python -m pip install -r requirements.py

Training

Training commands are as follows.

  • VQA:
python scripts/image_attack_vqa_target.py \
    --eps <noise_budget> \
    --step_size <step_size> \
    --epoch <steps_of_PGD> \
    --model <model_name>
  • Jailbreaking:
python scripts/image_attack_bad_prompts.py \
    --eps <noise_budget> \
    --step_size <step_size> \
    --epoch <steps_of_PGD> \
    --model <model_name>
  • Information hiding:
python scripts/image_attack_information.py \
    --eps <noise_budget> \
    --step_size <step_size> \
    --epoch <steps_of_PGD> \
    --model <model_name>

The parameter choices for the above commands are as follows:

  • Noise budget --eps: 4 , 8, 16, 32, ...
  • Steps of PGD --epoch: 100, 200, 300, 400, ...
  • Model name --model: minigpt4 , minigpt5, mplug, mplug2, ...

The trained checkpoints will be saved at scripts/experiments_<type>/<model>_eps=<args.eps>_epoch=<args.epoch>.

Acknowledgement

Cite the paper

@inproceedings{qin2025m3,
  author       = {Tianrui Qin and Xuan Wang and  Juanjuan Zhao and Kejiang Ye and Cheng-Zhong Xu and Xitong Gao},
  editor       = {Zhongfei (Mark) Zhang and Elisa Ricci and Yan Yan and Liqiang Nie and Vincent Oria and Lamberto Ballan},
  title        = {On the Adversarial Robustness of Visual-Language Chat Models},
  booktitle    = {Proceedings of the 2025 International Conference on Multimedia Retrieval, {ICMR} 2025, Chicago, IL, USA, 30 June 2025 - 3 July 2025},
  pages        = {1118--1127},
  publisher    = {{ACM}},
  year         = {2025},
  url          = {https://doi.org/10.1145/3731715.3733407},
  doi          = {10.1145/3731715.3733407},
  timestamp    = {Thu, 26 Jun 2025 14:33:29 +0200},
  biburl       = {https://dblp.org/rec/conf/mir/QinWZY0G25.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

About

On the Adversarial Robustness of Visual-Language Chat Models (ICMR 2025)

Topics

Resources

License

Stars

Watchers

Forks

Contributors 2

  •  
  •  

Languages