Skip to content

ku-cbd/phager

Repository files navigation

Phager

Phager - a rapid phage contig predictor using biological feature based machine learning.

Authors

Anastasiya Gæde and Thomas Sicheritz-Pontén

General information

Phager was trained on biological features of phage and non-phage genes. The script phager.py takes a raw or gzipped FASTA file as input, performs gene calling, and generates biological features for each gene. These features are then combined into feature triplets, corresponding to gene triplets along a shifting reading frame. The gene feature triplets are then used by a LightGBM model to determine whether the input genome is a phage. phager_overview

Getting started

Requirements:

  • Python version 3.8 or later
  • Biopython version 1.79 or later
  • Pandas
  • LighGBM

Installation

From GitHub

conda create -n phager pandas
conda activate phager
pip install tqdm icecream colorama pyrodigal biopython more_itertools lightgbm scikit-learn pyarrow
git clone https://github.com/ku-cbd/phager.git
cd phager


Example

python phager.py -h
python phager.py -a example/example_contigs.fasta -o myresults -v

References

Pyrodigal (Larralde, 2022), a Python library binding to Prodigal (Hyatt et al., 2010). (https://github.com/althonos/pyrodigal)

Sirén,K., Millard,A., Petersen,B., Gilbert,M.T.P., Clokie,M.R.J. and Sicheritz-Pontén,T. (2020) Rapid discovery of novel prophages using biological feature engineering and machine learning. 10.1101/2020.08.09.243022. https://www.biorxiv.org/content/10.1101/2020.08.09.243022v1.abstract

Citation

Large-scale analysis of bacterial genomes reveals thousands of lytic phages

Alexander Perfilyev, Anastasiya Gæde, Steve Hooton, Sara A. Zahran, Panos G. Kalatzis, Caroline Sophie Winther-Have, Rodrigo Ibarra Chavez, Rachael C. Wilkinson, Anisha M. Thanki, Zhengjie Liu, Qing Zhang, Qianghua Lv, Yuqing Liu, Adriano M. Gigante, Robert J. Atterbury, Bent Petersen, Andrew D. Millard, Martha R. J. Clokie & Thomas Sicheritz-Pontén

Nature Microbiology volume 11, pages42–52 (2026); doi: https://doi.org/10.1038/s41564-025-02203-4

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages