This repository contains an Autism Prediction System powered by Machine Learning and deployed using Next.js, FastAPI, and Golang. The project includes:
- A frontend built with Next.js
- A backend in Golang
- A FastAPI server for handling GPU-based ML computations
- A MySQL database
Ensure you have the following installed:
- Python 3.11
- Virtual Environment (
venv) - MySQL Server
- Golang
- Node.js & npm
- Uvicorn (for FastAPI)
git clone https://github.com/kspranav-az/AutismPredictionSystem.git
cd AutismPredictionSystempython3.11 -m venv env
source env/bin/activate # On Windows, use `env\\Scripts\\activate`pip install -r requirements.txtPut all required model files inside the models/ folder (located in the root directory).
Place test video files in the root directory.
uvicorn main:app --host 0.0.0.0 --port 8000 --reloadcd frontend
npm install
npm run devEdit app.go and update the MySQL DSN connection string:
dsn := "root:2004@tcp(127.0.0.1:3306)/aimed?parseTime=true"Then, navigate to the backend directory and build/run the Go server:
cd backend
go build
./mainOnce all servers are running, open your browser and visit:
http://localhost:3000
- Ensure MySQL is running with the correct credentials before starting the backend.
- Adjust firewall settings if necessary to allow API communication.
- If running on a remote machine, update
localhostwith the respective IP.