agentx
Install, chain, and orchestrate AI agents from the terminal.
agentx lets you discover, install, chain, and orchestrate AI agents from the terminal. Pipe one agent's output into another with standard Unix pipes — research, analyze, write, and ship in a single command. Agents are reusable packages for Claude Code that bundle system prompts, MCP servers, and secrets.
- Chain agents with pipes -
agentx run agent-a --quiet | agentx run agent-b "use this" - Run agents - Execute agents locally with
agentx run <agent> "prompt" - Install from registry - One command install:
agentx install @scope/agent - Schedule agents - Cron-based scheduling:
agentx schedule start <agent> - Search & discover - Find agents via CLI or browse agentx.dev
- Publish agents - Share your agents with
agentx publish - Scaffold agents - Create new agents with
agentx init - Encrypted secrets - AES-256-GCM encrypted secrets per agent
- MCP integration - Agents declare MCP servers for tool access
- Node.js >= 18
- Claude CLI installed and authenticated (
npm install -g @anthropic-ai/claude-code)
npm install -g @knid/agentxVerify your setup:
agentx doctor# Search for an agent
agentx search "data analysis"
# Install it
agentx install @agentx/data-analyst
# Run it
agentx run data-analyst "analyze trends in this data" --file sales.csv
# Chain agents — research, then write
agentx run web-researcher --quiet "2026 AI trends" \
| agentx run writing-assistant "turn this into a blog post"
# Interactive mode
agentx run data-analyst -i| Command | Description |
|---|---|
agentx run <agent> [prompt] |
Run an agent with a prompt |
agentx install <agent> |
Install an agent from the registry |
agentx uninstall <agent> |
Remove an installed agent |
agentx update [agent|--all] |
Update agents to latest versions |
agentx list |
List installed agents |
agentx search <query> |
Search the agent registry |
agentx trending |
Show trending agents |
agentx info <agent> |
Show agent details |
agentx init |
Scaffold a new agent project |
agentx validate |
Validate an agent manifest |
agentx test |
Test an agent locally |
agentx publish |
Publish an agent to the registry |
agentx schedule start <agent> |
Start an agent's cron schedule |
agentx schedule stop <agent> |
Stop an agent's schedule |
agentx schedule list |
List all active schedules |
agentx schedule logs <agent> |
View execution logs for a scheduled agent |
agentx schedule resume |
Resume all schedules after restart |
agentx configure <agent> |
Configure secrets for an agent |
agentx login |
Authenticate with GitHub |
agentx logout |
Clear authentication |
agentx whoami |
Show current user |
agentx doctor |
Check system requirements |
agentx config |
Manage global configuration |
# Scaffold a new agent
agentx init
# Edit the generated files
# - agent.yaml (manifest: name, version, MCP servers, permissions)
# - system-prompt.md (the system prompt for Claude)
# Validate it
agentx validate
# Test locally
agentx run . "test prompt"
# Publish to the registry
agentx login
agentx publishname: my-agent
version: 1.0.0
description: A helpful agent
author: "@yourusername"
category: productivity
permissions:
filesystem: true
network: true
pre_run:
- command: my-bridge
background: true
mcp_servers:
filesystem:
command: npx
args: ["-y", "@modelcontextprotocol/server-filesystem", "./"]
secrets:
- name: API_KEY
description: API key for the service
required: true
schedule:
- name: "Daily report"
cron: "0 9 * * 1-5"
prompt: "Generate the daily report"Agents write to stdout, so you can chain them with standard Unix pipes. The output of one agent becomes the input context for the next — build multi-step AI workflows in a single line:
# Research a topic, then create a Notion page from the results
agentx run web-researcher --quiet "2026 AI trends" \
| agentx run notion-agent "create a new page summarizing this research"
# Scan for vulnerabilities, then create a Linear issue for each finding
agentx run security-scanner --quiet "audit src/auth/ for vulnerabilities" \
| agentx run linear-agent "create a bug for each critical finding"
# Analyze data, then draft a report
agentx run data-analyst --quiet "summarize quarterly revenue" --file q4.csv \
| agentx run writing-assistant "turn this into an executive summary"
# Review code, then send the review to Slack
agentx run code-reviewer --quiet "review the latest changes in src/api/" \
| agentx run slack-agent "post this code review summary to #engineering"
# Three-step pipeline: research → rewrite → post
agentx run web-researcher --quiet "latest React best practices 2026" \
| agentx run writing-assistant --quiet "rewrite as a concise team guide" \
| agentx run slack-agent "post this to #frontend"Use --quiet on intermediate agents to suppress headers/footers and pipe only the raw output. The last agent in the chain can run without --quiet to display formatted output.
Agents can declare cron-based schedules in agent.yaml. A shared background daemon runs on your machine and executes agents at the specified times.
# Start an agent's schedule
agentx schedule start slack-agent
# View active schedules
agentx schedule list
# Check execution logs
agentx schedule logs slack-agent
# View all past runs
agentx schedule logs slack-agent --all
# Stop a schedule
agentx schedule stop slack-agent
# Resume all schedules after a restart
agentx schedule resumeThe daemon automatically retries failed runs (up to 2 retries with backoff), rotates logs (keeps last 50 per agent), and cleans up when all schedules are stopped.
14 agents across all 10 categories — install any with agentx install @agentx/<name>:
| Agent | Category | Description |
|---|---|---|
@agentx/gmail-agent |
communication | Email assistant with Gmail MCP |
@agentx/slack-agent |
communication | Messaging assistant with Slack MCP |
@agentx/whatsapp-agent |
communication | WhatsApp messaging via local bridge |
@agentx/github-agent |
devtools | PR and issue management with GitHub MCP |
@agentx/code-reviewer |
devtools | Code review with GitHub + filesystem MCP |
@agentx/data-analyst |
data | CSV/JSON data analysis with filesystem MCP |
@agentx/postgres-agent |
data | PostgreSQL query and schema explorer |
@agentx/web-researcher |
research | Web search and synthesis with Brave + Fetch |
@agentx/notion-agent |
productivity | Notion workspace and database management |
@agentx/linear-agent |
productivity | Linear issue tracking and sprint management |
@agentx/sentry-agent |
monitoring | Error triage and stack trace analysis |
@agentx/puppeteer-agent |
automation | Browser automation, screenshots, and scraping |
@agentx/writing-assistant |
writing | Proofreading, drafting, and document editing |
@agentx/security-scanner |
security | Vulnerability scanning and dependency auditing |
Global config is stored at ~/.agentx/config.yaml:
# View all config
agentx config list
# Get a value
agentx config get registry
# Set a value
agentx config set telemetry false| Key | Default | Description |
|---|---|---|
registry |
https://registry.agentx.dev |
Registry URL |
claude_path |
claude |
Path to Claude CLI |
default_output |
text |
Default output format (text/json) |
telemetry |
true |
Enable anonymous telemetry |
auto_update |
true |
Auto-check for updates |
packages/
cli/ # agentx CLI (npm package)
web/ # agentx.dev website and registry API
agents/ # Official starter agents
# Clone the repo
git clone https://github.com/agentx-dev/agentx.git
cd agentx
# Install dependencies
npm install
# Build the CLI
npm run build --workspace=packages/cli
# Run tests
npm test --workspace=packages/cli
# Type check
npx tsc --noEmit --project packages/cli/tsconfig.json
# Link for local development
cd packages/cli && npm linkSee CONTRIBUTING.md for full development guidelines.