A streamlined, modular implementation of an agentic coding system that can generate, modify, and debug code autonomously. Works with gVisor template containers that are autoscaled by Ray.
# Run a task with a specific config
python main.py agent_configs/test_enhanced_agent_v2.yaml -t "Create a fibonacci calculator in Python"
# Start interactive session
python main.py agent_configs/test_enhanced_agent_v2.yaml -i
# Use custom workspace
python main.py agent_configs/test_enhanced_agent_v2.yaml -w my_project -t "Build a web scraper"Agent configurations are stored in the agent_configs/ directory. Key configs:
test_enhanced_agent_v2.yaml- Enhanced agent with multiple tool calling modestest_opencode_gpt5_nano_c_fs.yaml- Specialized for C filesystem taskstest_simple_native.yaml- Simple native tool calling setup
-
agentic_coder_prototype/- Main agent implementationagent.py- Simplified interfaceagent_llm_openai.py- Core LLM agent logicprovider_routing.py- Multi-provider supportprovider_adapters.py- Provider-specific adapterstool_calling/- Tool calling system
-
agent_configs/- Agent configuration files -
breadboard/- Sandboxing + LSP utilitiesbreadboard/sandbox_v2.py- Secure execution environmentbreadboard/lsp_manager_v2.py- Language server integration
-
implementations/- Tool definitions and system prompts -
tui_skeleton/- Claude Code-style TUI + CLI (breadboardbinary)
- Multi-Provider Support: OpenAI, Anthropic, OpenRouter
- Secure Sandboxing: Isolated execution environments
- LSP Integration: Language server support for enhanced code intelligence
- Flexible Tool Calling: Multiple syntax formats and execution modes
- Modular Design: Clean separation of concerns
├── main.py # CLI entry point
├── agentic_coder_prototype/ # Core agent system
├── agent_configs/ # Agent configurations
├── breadboard/ # Sandbox + LSP utilities
├── implementations/ # Tools and prompts
├── tui_skeleton/ # TUI + CLI (Node/Ink)
├── tests/ # Test suite
└── misc/ # Non-essential files
# Run specific tests
python -m pytest tests/test_agent_session.py -v
# Run all tests
python -m pytest tests/ -v- Surface manifest smoke check:
python scripts/phase9_surface_smoke_check.py --run-dir <logging_run_dir>
- TreeRunner scaffold config snippet:
ctrees: runner: enabled: true branches: 2
Agent behavior is controlled through YAML configuration files. Key parameters:
model: LLM model to use (e.g., "openrouter/openai/gpt-4")max_iterations: Maximum agent loop iterationstool_prompt_mode: Tool calling syntax preferencetools_file: Path to tool definitions
python main.py agent_configs/test_enhanced_agent_v2.yaml -t "Create a calculator.py that can add, subtract, multiply, and divide two numbers with error handling"python main.py agent_configs/test_enhanced_agent_v2.yaml -t "Create a FastAPI web service with endpoints for user management (create, read, update, delete users)"python main.py agent_configs/test_enhanced_agent_v2.yaml -i
> Create a data processing script
> Add unit tests for the script
> Fix any bugs found in testing
> exitThis project is experimental research software. Use at your own risk.