-
Notifications
You must be signed in to change notification settings - Fork 6
Home
Turnstile is a piece of WSGI middleware that performs true distributed rate-limiting. System administrators can run an API on multiple nodes, then place this middleware in the pipeline prior to the application. Turnstile uses a Redis database to track the rate at which users are hitting the API, and can then apply configured rate limits, even if each request was made against a different API node.
Turnstile can be easily installed like many Python packages, using PIP:
pip install turnstile
You can install the dependencies required by Turnstile by issuing the following command:
pip install -r .requires
From within your Turnstile source directory.
If you would like to run the tests, you can install the additional test dependencies in the same way:
pip install -r .test-requires
Note that the test suite is currently written to work with Python 2.7, even though Turnstile itself should work with Python 2.6.
Turnstile is intended for use with PasteDeploy-style configuration
files. It is a filter, and should be placed in an appropriate place
in the WSGI pipeline such that the limit classes used with Turnstile
can access the information necessary to make rate-limiting decisions.
(With the turnstile.limits:Limit class provided by Turnstile, no
additional information is required, as that class does not
differentiate between users of your application.)
The filter section of the PasteDeploy configuration file will also
need to contain enough information to allow Turnstile to access the
database. Other options may be configured from here as well, such as
the preprocess configuration variable. The simplest example of
Turnstile configuration would be:
[filter:turnstile] use = egg:turnstile#turnstile redis.host = <your Redis database host name or IP>
The following are the recognized configuration options:
- config
-
Allows specification of an alternate configuration file. This can be used to generate a single file which can be shared by WSGI servers using the Turnstile middleware and the various provided tools. This can also allow for separation of code-related options, such as the
preprocessoption, from pure configuration, such as theredis.hostoption. The configuration file is an INI-formatted file, with section names corresponding to the first segment of the configuration option name. That is, theredis.hostoption would be set as follows:[redis] host = <your Redis database host name or IP>
Configuration options which have no prefix are grouped under the
[turnstile]section of the file, as follows:[turnstile] status = 404 Not Found
Note that specifying the
configoption in the[turnstile]section will have no effect; it is not possible to cause another configuration file to be included in this way. - control.channel
- Specifies the channel that the control daemon listens on. (See below for more information about the purpose of the control daemon.) This option defaults to "control".
- control.errors_channel
- Specifies the channel that the control daemon (see below) reports errors to. This option defaults to "errors".
- control.errors_key
- Specifies the key of a set in the Redis database to which errors will be stored. This option defaults to "errors".
- control.limits_key
- The key under which the limits are stored in the database. See the section on tools for more information on how to load and dump the limits stored in the Redis database. This option defaults to "limits".
- control.node_name
- The name of the node. If provided, this option allows the specification of a recognizable name for the node. Currently, this node name is only reported when issuing a "ping" command to the control daemon (see below), and may be used to verify that all hosts responded to the ping.
- control.reload_spread
- When limits are changed in the database, a command is sent to the control daemon (see below) to cause the limits to be reloaded. As having all nodes hit the Redis database simultaneously may overload the database, this option, if set, allows the reload to be spread out randomly within a configured interval. This option should be set to the size of the desired interval, in seconds. If not set, limits will be reloaded immediately by all nodes.
- control.remote
- If set to "on", "yes", "true", or "1", Turnstile will connect to a
remote control daemon (see the
remote_daemontool described below). This enables Turnstile to be compatible with WSGI servers which use multiple worker processes. Note that the configuration valuescontrol.remote.authkey,control.remote.host, andcontrol.remote.portare required. - control.remote.authkey
- Set to an authentication key, for use when
control.remoteis enabled. Must be the value used by the invocation ofremote_daemon. - control.remote.host
- Set to a host name or IP address, for use when
control.remoteis enabled. Must be the value used by the invocation ofremote_daemon. - control.remote.port
- Set to a port number, for use when
control.remoteis enabled. Must be the value used by the invocation ofremote_daemon. - control.shard_hint
- Can be used to set a sharding hint which will be provided to the
listening thread of the control daemon (see below). This hint is
not used by the default Redis
Connectionclass. - preprocess
- Contains a list of preprocessor functions, specified as "module:function" pairs separated by spaces. During each request, each preprocessor will be called in turn, with the middleware object (from which can be obtained the database handle, as well as the configuration) and the request environment as arguments. Note that any exceptions thrown by the preprocessors will not be caught, and request processing will be halted; this will likely result in a 500 error being returned to the user.
- redis.connection_pool
- Identifies the connection pool class to use. If not provided,
defaults to
redis.ConnectionPool. This may be used to allow client-side sharding of the Redis database. - redis.connection_pool.connection_class
- Identifies the connection class to use. If not provided, the
appropriate
redis.Connectionsubclass for the configured connection is used (redis.Connectionifredis.hostis specified, elseredis.UnixDomainSocketConnection). - redis.connection_pool.max_connections
- Allows specification of the maximum number of connections to the Redis database. Optional.
- redis.connection_pool.parser_class
- Identifies the parser class to use. Optional. This is an advanced
feature of the
redispackage used by Turnstile. - redis.connection_pool.*
- Any other configuration value provided in the
redis.connection_pool.hierarchy will be passed as keyword arguments to the configured connection pool class. Note that the values will be passed as strings. - redis.db
- Identifies the specific sub-database of the Redis database to be used by Turnstile. If not provided, defaults to 0.
- redis.host
- Identifies the host name or IP address of the Redis database to
connect to. Either
redis.hostorredis.unix_socket_pathmust be provided. - redis.password
- If the Redis database has been configured to use a password, this option allows that password to be specified.
- redis.port
- Identifies the port the Redis database is listening on. If not provided, defaults to 6379.
- redis.socket_timeout
- If provided, specifies an integer socket timeout for the Redis database connection.
- redis.unix_socket_path
- Names the UNIX socket on the local host for the local Redis database
to connect to. Either
redis.hostorredis.unix_socket_pathmust be provided. - status
- Contains the status code to return if rate limiting is tripped.
This defaults to "413 Request Entity Too Large". Note that this
value must start with the 3-digit HTTP code, followed by a space and
the text corresponding to that status code. Also note that,
regardless of the status code, Turnstile will include the
Retry-Afterheader in the response. (The value of theRetry-Afterheader will be the integer number of seconds until the request can be retried.) - turnstile
- If set, identifies an alternate class to use for the Turnstile
middleware. This can be used in conjunction with subclassing
turnstile.middleware:TurnstileMiddleware, which may be done to override how over-limit conditions are formatted.
Other configuration values are available to the preprocessors and the
turnstile.limits:Limit subclasses, but extreme care should be
taken that such configurations remain in sync across the entire
cluster.
Turnstile stores the limits configuration in the Redis database, in addition to the ephemeral information used to check and enforce the rate limits. This makes it possible to change the limits dynamically from a single, central location. In order to facilitate such changes, each Turnstile instance uses an eventlet thread to run a "control daemon." The control daemon uses the publish/subscribe support provided by Redis to listen for commands, of which two are currently recognized: ping and reload.
Some WSGI servers cannot use Turnstile in this mode, due to using
multiple processes (typically through use of the "multiprocessing"
Python module). In these circumstances, the control daemon may be
started in its own process (see the remote_daemon tool). Enabling
this requires that the control.remote configuration option be
turned on, and values provided for control.remote.authkey,
control.remote.host, and control.remote.port. See the
documentation for these options for more information.
It is possible to configure the listening thread of the control daemon
to use alternate configuration for connecting to the Redis database.
The defaults will be drawn from the [redis] section of the
configuration, but by specifying redis.* options in the
[control] section of the configuration, specific values may be
overridden.
The "ping" command is the simplest of the control daemon commands. In
its simplest form, the message "ping:<channel>" is written to the control
channel, which will cause all running Turnstile instances to return
the message "pong" to the specified channel. If the
control.node_name configuration option has been set, this node
name will be included in the response, as "pong:<node name>".
Finally, additional data (such as a timestamp) can be included in the
"ping" command, as in the message "ping:<channel>:<timestamp>"; this
data will be appended to the response, i.e., "pong:<node
name>:<timestamp>". This could be used to verify that all nodes are
responding and not too heavily loaded.
(Note that if control.node_name is not specified, the response to
a "ping" command containing additional data such as a timestamp will
be "pong::<timestamp>".)
Note that, at present, no tool exists for sending pings or receiving pongs.
The "reload" command is the real reason for the existence of the control daemon. This command causes the current set of limits to be reloaded from the database and presented to the middleware for enforcement.
The simplest form of the reload command is simply, "reload". If the
control.reload_spread configuration option was set, the reload
will be scheduled for some time within the configured time interval;
otherwise, it will be performed immediately.
The next simplest form of the reload command is "reload:immediate". This causes an immediate reload of the limits, overriding any configured time spread.
The final form of the reload command is "reload:spread:<interval>",
where the "<interval>" specifies a time interval, in seconds, over
which to spread reloading of the limits. This specified interval is
used in preference to that specified by control.reload_spread, if
set.
Note that the setup_limits tool automatically initiates a reload
once the limits are updated in the database. See the section on tools
for more information.
The limits are stored in the Redis database using a sorted set, and
they are encoded using Msgpack. (Although the Msgpack format is not
human-readable, it is very space and time efficient, which is why it
was chosen for this application.) This makes manual management of the
limits configuration more difficult, and so Turnstile ships with two
tools to make management of the rate limiting configuration easier. A
third tool starts up a remote control daemon, for use when Turnstile
is used with applications that run multiple processes, such as the
nova-api component of OpenStack.
The dump_limits tool may be used to dump the current limits in the
database into an XML representation. This tool requires the name of
an INI-style configuration file; see the section on configuring the
tools below for more information.
A usage summary for dump_limits:
usage: dump_limits [-h] [--debug] config limits_file
Dump the current limits from the Redis database.
positional arguments:
config Name of the configuration file, for connecting to the Redis
database.
limits_file Name of the XML file that the limits will be dumped to.
optional arguments:
-h, --help show this help message and exit
--debug, -d Run the tool in debug mode.
The remote_daemon tool may be used to start a separate control
daemon process. This tool requires the name of an INI-style
configuration file; see the section on configuring the tools below for
more information. Note that, in addition to the required Redis
configuration values, configuration values for the
control.remote.authkey, control.remote.host, and
control.remotes.port options must be provided.
A usage summary for remote_daemon:
usage: remote_daemon [-h] [--log-config LOGGING] [--debug] config
Run the external control daemon.
positional arguments:
config Name of the configuration file.
optional arguments:
-h, --help show this help message and exit
--log-config LOGGING, -l LOGGING
Specify a logging configuration file.
--debug, -d Run the tool in debug mode.
The setup_limits tool may be used to read an XML file (such as
that produced by dump_limits) and load the rate limiting
configuration into the Redis database. This tool requires the name of
an INI-style configuration file; see the section on configuring the
tools below for more information.
A usage summary for setup_limits:
usage: setup_limits [-h] [--debug] [--dryrun] [--noreload]
[--reload-immediate] [--reload-spread SECS]
config limits_file
Set up or update limits in the Redis database.
positional arguments:
config Name of the configuration file, for connecting to the
Redis database.
limits_file Name of the XML file describing the limits to
configure.
optional arguments:
-h, --help show this help message and exit
--debug, -d Run the tool in debug mode.
--dryrun, --dry_run, --dry-run, -n
Perform a dry run; inhibits loading data into the
database.
--noreload, -R Inhibit issuing a reload command.
--reload-immediate, -r
Cause all nodes to immediately reload the limits
configuration.
--reload-spread SECS, -s SECS
Cause all nodes to reload the limits configuration
over the specified number of seconds.
The tools dump_limits, remote_daemon, and setup_limits
require an INI-style configuration file, which specifies how to
connect to the Redis database. This file should contain the section
"[redis]" and should be populated with the same "redis.*" options as
the PasteDeploy configuration file, minus the "redis." prefix. For
example:
[redis] host = <your Redis database host name or IP>
Each "redis.*" option recognized by the Turnstile middleware is understood by the tools.
Additional options may be provided, such as the control channel,
limits key, and the remote_daemon options. The configuration file
should be compatible with the alternate configuration file described
under the config configuration option for the Turnstile
middleware.
The XML file used for expressing rate limit configuration is
relatively straightforward, or at least as straightforward as XML can
be. The top-level element is <limits>; this should contain a
sequence of <limit> elements, each containing a number of
<attr> elements. The specific attributes available for any given
limit class depend on the exact class, but that information is
documented in the attrs attribute of the limit class. (This
information is suitable for introspection.)
The <limit> element has one XML attribute which must be specified:
the class attribute, which must be set to a "module:class" string
identifying the desired limit class. The <attr> element also has
a single XML attribute which must be set: name, which identifies
the name of the Limit attribute. The contents of the <attr>
element identify the value for the named attribute.
Some limit attributes are lists; for these attributes, the <attr>
element must contain one or more <value> elements, whose contents
identify a single item in the attribute list. Other limit attributes
are dictionaries; for these attributes, again the <attr> element
must contain one or more <value> elements, but now those
<value> elements must have the XML attribute key set to the
dictionary key corresponding to that value.
As an example, consider the following limits configuration:
<?xml version='1.0' encoding='UTF-8'?>
<limits>
<limit class="turnstile.limits:Limit">
<attr name="requirements">
<value key="pageid">[0-9]+</value>
</attr>
<attr name="unit">second</attr>
<attr name="uri">/page/{pageid}</attr>
<attr name="value">10</attr>
<attr name="verbs">
<value>GET</value>
</attr>
</limit>
</limits>
In this example, GET access to /page/{pageid} is rate-limited to
10 per second. The requirements attribute may be used to specify
regular expressions to tune the matching of URI components; in this
case, the {pageid} value must be composed of 1 or more digits.
The limit class used is the basic turnstile.limits:Limit limit
class.
All limit classes must descend from turnstile.limits:Limit. This
admittedly un-Pythonic requirement has a number of advantages,
including the specific machinery which allows limits to be stored into
the Redis database. Most limit classes only need to worry about the
attrs class attribute and the filter() method, although the
route() and format() methods may also be hooked. For more
information about these methods, see the docstrings provided for their
default implementations in turnstile.limits:Limit.
The Turnstile configuration is available to preprocessors and to the
Limit classes. For preprocessors, it is available directly from the
middleware object (the first passed parameter) via the config
attribute. (The database handle is also available via the db
attribute, should access to the database be required.) For the
filter() method of the Limit classes, the configuration is
available in the request environment under the turnstile.conf key.
The Turnstile configuration is represented as a
turnstile.config:Config object. Configuration keys that do not
contain a "." are available as attributes of this object; for example,
to obtain the configured status value, assuming the Turnstile
configuration is available in the conf variable, the correct code
would be:
status = conf.status
For those configuration keys which do contain a ".", the part of the
name to the left of the first "." becomes a dictionary key, and the
remainder of the name will be a second key. For example, to access
the value of the redis.connection_pool.connection_class variable,
the correct code would be:
connection_class = config['redis']['connection_pool.connection_class']
All values in the configuration are stored as strings. Configuration values do not need to be pre-declared in any way; Turnstile ignores (but maintains) configuration values that it does not use, making these values available for use by preprocessors and Limit subclasses.
For convenience, the turnstile.config:Config class offers a static
method to_bool() which can convert a string value to a boolean
value. The strings "t", "true", "on", "y", and "yes" are all
recognized as a boolean True value, as are numeric strings which
evaluate to non-zero values. The strings "f", "false", "off", "n",
and "no" are all recognized as a boolean False value, as are
numeric strings which evaluate to zero values. Any other string value
will cause to_bool() to raise a ValueError, unless the
do_raise argument is given as False, in which case
to_bool() will return a boolean False value.