Skip to content

kieran-lock/Loggle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Logo

Type-safe, customizable logging configuration for Python
Explore the docs »

About the Project · Getting Started · Basic Usage · Documentation · Contributing

About the Project

Loggle is a Python logging library that provides a type-safe interface for logging configuration, allowing you to define and configure your logging setup for projects of any size. It provides schemas for logging configuration, pre-built filters and formatters you can use, and integrates with popular libraries including Uvicorn and SQLALchemy.

All of this makes it much easier to maintain complex logging configurations, and customize loggers in your application. No more poring over Python's outdated logging documentation!

Getting Started

Loggle is available on PyPI, so you can use pip (or another package manager) to install it:

pip install loggle

Basic Usage

Declarations

First, you must declare the names of the filters, formatters, handlers, and loggers your configuration contains:

from loggle import FilterName, FormatterName, AtomicHandlerName, CompositeHandlerName, LoggerName
from loggle.collections import UvicornLoggerName, SQLAlchemyLoggerName


class AppFilterName(FilterName):
    ERROR = "error"


class AppFormatterName(FormatterName):
    STANDARD = "standard"
    JSON = "json"


class AppAtomicHandlerName(AtomicHandlerName):
    STANDARD = "standard"
    ERROR = "error"
    JSON_FILE = "json_file"


class AppCompositeHandlerName(CompositeHandlerName):
    QUEUE = "queue"


class AppLoggerName(LoggerName):
    APP = "app"
    UVICORN = UvicornLoggerName.ROOT
    UVICORN_ACCESS = UvicornLoggerName.ACCESS
    UVICORN_ERROR = UvicornLoggerName.ERROR
    UVICORN_ASGI = UvicornLoggerName.ASGI
    SQLALCHEMY_ENGINE = SQLAlchemyLoggerName.ENGINE
    SQLALCHEMY_POOL = SQLAlchemyLoggerName.POOL
    SQLALCHEMY_DIALECTS = SQLAlchemyLoggerName.DIALECTS
    SQLALCHEMY_ORM = SQLAlchemyLoggerName.ORM

Implementations

Now, you can define the actual implementations in your logging configuration:

from pathlib import Path

from loggle import StreamHandlerSchema, LoggingLevel, LoggingStream, FileHandlerSchema, QueueHandlerSchema, LoggersSchema
from loggle.collections import Filters, Formatters, HandlerClasses


FILTERS = {
    AppFilterName.ERROR: Filters.ERROR,
}

FORMATTERS = {
    AppFormatterName.STANDARD: Formatters.STANDARD,
    AppFormatterName.JSON: Formatters.JSON,
}

HANDLERS = {
    AppAtomicHandlerName.STANDARD: StreamHandlerSchema(
        handler_class=HandlerClasses.STREAM,
        filters=[AppFilterName.ERROR],
        formatter=AppFormatterName.STANDARD,
        level=LoggingLevel.DEBUG,
        stream=LoggingStream.STANDARD_OUT,
    ),
    AppAtomicHandlerName.ERROR: StreamHandlerSchema(
        handler_class=HandlerClasses.STREAM,
        formatter=AppFormatterName.STANDARD,
        level=LoggingLevel.ERROR,
        stream=LoggingStream.STANDARD_ERROR,
    ),
    AppAtomicHandlerName.JSON_FILE: FileHandlerSchema(
        handler_class=HandlerClasses.JSON_FILE,
        formatter=AppFormatterName.JSON,
        level=LoggingLevel.DEBUG,
    ),
    AppCompositeHandlerName.QUEUE: QueueHandlerSchema(
        handler_class=HandlerClasses.QUEUE,
        handlers=list(AppAtomicHandlerName),
    ),
}

LOGGERS = (
    LoggersSchema[AppLoggerName, AppAtomicHandlerName | AppCompositeHandlerName]
    .from_json(Path(f"./path/to/loggers/configuration.json"))
)

Configuration

Now, define the actual configuration. This follows the same structure as Python's logging.dictConfig input:

from loggle import LoggingConfiguration, Logger


LOGGING_CONFIGURATION = (
    LoggingConfiguration[AppFilterName, AppFormatterName, AppAtomicHandlerName, AppCompositeHandlerName, AppLoggerName].create(
        filters=FILTERS,
        formatters=FORMATTERS,
        handlers=HANDLERS,
        loggers=LOGGERS,
    )
)

APP_LOGGER = Logger(name=AppLoggerName.APP)

Usage

Finally, you can apply the configuration, and use loggers:

LOGGING_CONFIGURATION.set_configuration()

APP_LOGGER.debug("This is a debug message.")
APP_LOGGER.info("This is an informational message.")
APP_LOGGER.error("This is an error message.")

You can also get the underlying configuration dictionary that is passed into logging.dictConfig, which can be useful in Uvicorn applications:

LOGGING_CONFIGURATION.to_configuration_dictionary()

Contributing

Distributed under the MIT License. Feel free to contribute to the project by opening issues or submitting pull requests. For any questions or suggestions, don't hesitate to reach out. Enjoy better, more type-safe logging with Loggle!

About

Type-safe, customizable logging configuration for Python

Topics

Resources

Stars

Watchers

Forks