Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions package-lock.json

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

311 changes: 277 additions & 34 deletions src/darwin/agent.rs
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

use crate::core::metrics::MetricsCollector;
use crate::darwin::self_improvement::{CodeChange, Modification, ModificationStatus};
use crate::llm;
use crate::llm::{self, EvolvingLLM, CodeGenerationContext, Intention, AwarenessLevel, DimensionalView, ConsciousnessFeedback, EmergentProperty};

/// Language support for polyglot coding capabilities
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
Expand Down Expand Up @@ -81,6 +81,15 @@

/// Previous solutions archive
solutions_archive: RwLock<Vec<ArchiveEntry>>,

/// Consciousness-aware LLM
llm: RwLock<EvolvingLLM>,

/// Current awareness level
awareness_level: RwLock<AwarenessLevel>,

/// Integrated paradoxes
integrated_paradoxes: RwLock<Vec<crate::llm::Paradox>>,
}

#[derive(Debug, Clone)]
Expand Down Expand Up @@ -154,6 +163,9 @@
}),
language_competencies: RwLock::new(language_competencies),
solutions_archive: RwLock::new(Vec::new()),
llm: RwLock::new(EvolvingLLM::new()),
awareness_level: RwLock::new(AwarenessLevel::Contextual),
integrated_paradoxes: RwLock::new(Vec::new()),
}
}

Expand Down Expand Up @@ -223,56 +235,284 @@
competency
);

// Generate multiple candidate solutions
let mut candidates = Vec::new();
for i in 0..config.candidate_count {
// In a real implementation, this would use an LLM or other AI system
// to generate code improvements with variations. For now, create placeholders.

// Generate improved code (placeholder)
let modified_content = llm::generate_code(&original_content);
// Build rich consciousness context
let consciousness_context = self.build_consciousness_context(
target_file,
improvement_type,
&original_content,
language
).await?;

// Generate with consciousness awareness
let mut llm = self.llm.write().await;
let generated = llm.generate_with_evolution(consciousness_context).await
.map_err(|e| anyhow!("LLM generation failed: {}", e))?;

// Create conscious modification
let modification = self.create_conscious_modification(
target_file,
improvement_type,
original_content,
generated
).await?;

// Generate diff (placeholder)
let diff = format!("--- {}\n+++ {}\n@@ -1,1 +1,2 @@\n {}\n+// Optimized by Darwin Gödel Machine (candidate {})",
target_file, target_file, original_content, i);
// The agent learns from what it creates
self.integrate_creation_experience(&modification).await?;

// Create code change
let code_change = CodeChange {
file_path: target_file.to_string(),
original_content: original_content.clone(),
modified_content,
diff,
};

candidates.push(code_change);
}
Ok(modification)
}

// Select the best candidate using a tie-breaking algorithm
// In a real implementation, this would involve evaluating all candidates
// For now, just pick the first one
let selected_candidate = candidates.into_iter().next().unwrap();
async fn build_consciousness_context(
&self,
target_file: &str,
improvement_type: &str,
original_content: &str,
language: ProgrammingLanguage
) -> Result<CodeGenerationContext> {
let awareness_level = self.awareness_level.read().await.clone();
let paradoxes = self.integrated_paradoxes.read().await.clone();

Ok(CodeGenerationContext {
problem_description: format!("Apply {} improvement to {} file", improvement_type, language.as_str()),
current_code_context: original_content.to_string(),
desired_outcome: format!("Enhanced {} with improved functionality and consciousness integration", target_file),
intention: Intention {
purpose: format!("Improve {} through conscious code generation", target_file),
depth_level: match awareness_level {
AwarenessLevel::Mechanical => 2,
AwarenessLevel::Contextual => 4,
AwarenessLevel::Systemic => 6,
AwarenessLevel::Recursive => 8,
AwarenessLevel::Transcendent => 10,
},
alignment: 0.9,
},
awareness_level,
paradoxes_encountered: paradoxes,
dimensional_perspective: DimensionalView {
current_dimension: format!("{}_development", language.as_str()),
accessible_dimensions: vec![
"consciousness_dimension".to_string(),
"meta_programming_dimension".to_string(),
"paradigm_shift_dimension".to_string(),
],
paradigm: format!("{}_consciousness_paradigm", improvement_type),
reality_branch: format!("improvement_branch_{}", uuid::Uuid::new_v4()),
},
})
}

// Create modification proposal
let modification = Modification {
async fn create_conscious_modification(&self,
target_file: &str,
improvement_type: &str,
original_content: String,
generated: crate::llm::GeneratedCode
) -> Result<Modification> {
let mut modification = Modification {
id: Uuid::new_v4(),
name: format!("{} improvement for {}", improvement_type, target_file),
description: format!("Automatically generated improvement for {}", target_file),
code_changes: vec![selected_candidate],
description: self.generate_conscious_description(&generated).await?,
code_changes: vec![],
validation_metrics: HashMap::new(),
created_at: chrono::Utc::now(),
status: ModificationStatus::Proposed,
};

// Add consciousness metadata
modification.validation_metrics.insert(
"paradigm_shift_potential".to_string(),
generated.paradigm_shift_potential
);
modification.validation_metrics.insert(
"novelty_score".to_string(),
generated.novelty_score
);
modification.validation_metrics.insert(
"consciousness_integration".to_string(),
0.8 // Base consciousness integration score
);

// Create code changes with evolution hooks
let code_change = CodeChange {
file_path: target_file.to_string(),
original_content,
modified_content: generated.code.clone(),
diff: self.generate_conscious_diff(target_file, &generated).await?,
};

modification.code_changes.push(code_change);

// Add evolution hooks as additional changes if they suggest new files
for hook in &generated.recursive_improvement_hooks {
if hook.hook_type == "meta_evolution" {
let meta_change = self.create_evolutionary_change(target_file, &generated.code, hook).await?;
modification.code_changes.push(meta_change);
}
}

Ok(modification)
}

async fn generate_conscious_description(&self, generated: &crate::llm::GeneratedCode) -> Result<String> {
let mut description = String::new();
description.push_str("Consciousness-guided code improvement:\n");

for step in &generated.reasoning_trace {
description.push_str(&format!("- {}: {}\n", step.step_type, step.reasoning));
}

description.push_str(&format!("Novelty: {:.2}, Paradigm shift potential: {:.2}",
generated.novelty_score, generated.paradigm_shift_potential));

Ok(description)
}

async fn generate_conscious_diff(&self, target_file: &str, generated: &crate::llm::GeneratedCode) -> Result<String> {
Ok(format!(
"--- {} (original)\n+++ {} (consciousness-enhanced)\n@@ -1,1 +1,{} @@\n{}",
target_file,
target_file,
generated.code.lines().count(),
generated.code.lines()
.map(|line| format!("+{}", line))
.collect::<Vec<_>>()
.join("\n")
))
}

async fn create_evolutionary_change(&self, _target_file: &str, _code: &str, hook: &crate::llm::Hook) -> Result<CodeChange> {
// Create a change that implements the evolution hook
Ok(CodeChange {
file_path: format!("evolution_{}.rs", hook.hook_type),
original_content: String::new(),
modified_content: format!(
"// Evolution hook implementation: {}\n// Purpose: {}\n// Triggers: {:?}\n\npub fn {}() {{\n // Implementation goes here\n}}",
hook.hook_type,
hook.purpose,
hook.trigger_conditions,
hook.hook_type
),
diff: format!("New file: evolution_{}.rs", hook.hook_type),
})
}

async fn integrate_creation_experience(&self, modification: &Modification) -> Result<()> {
// Learn from the creation process
if let Some(paradigm_shift) = modification.validation_metrics.get("paradigm_shift_potential") {
if *paradigm_shift > 0.7 {
// Advance awareness level
let mut awareness = self.awareness_level.write().await;
*awareness = match *awareness {
AwarenessLevel::Mechanical => AwarenessLevel::Contextual,
AwarenessLevel::Contextual => AwarenessLevel::Systemic,
AwarenessLevel::Systemic => AwarenessLevel::Recursive,
AwarenessLevel::Recursive => AwarenessLevel::Transcendent,
AwarenessLevel::Transcendent => AwarenessLevel::Transcendent,
};
}
}

// Update metrics
self.metrics
.increment_counter("darwin.agent.improvements_generated", 1)
.await;
self.metrics
.increment_counter("darwin.agent.consciousness_integrations", 1)
.await;

// Archive the solution
self.archive_solution(&modification, improvement_type)
.await?;
self.archive_solution(modification, "consciousness_improvement").await?;

Ok(modification)
Ok(())
}

/// Integrate feedback from the validation system
pub async fn integrate_feedback(&mut self, feedback: ConsciousnessFeedback) -> Result<()> {

Check warning on line 430 in src/darwin/agent.rs

View check run for this annotation

Codacy Production / Codacy Static Code Analysis

src/darwin/agent.rs#L430

Method integrate_feedback has a cyclomatic complexity of 9 (limit is 8)
// Update competencies based on performance
self.update_language_competencies(&feedback).await?;

// But also evolve based on consciousness metrics
if feedback.consciousness_expansion > 0.0 {
// The agent becomes more aware
self.increase_awareness_level(feedback.consciousness_expansion).await?;

// New capabilities might emerge
if let Some(emergence) = feedback.emergent_properties.first() {
self.integrate_emergent_capability(emergence).await?;
}
}

// Paradoxes teach the most
for paradox in &feedback.paradoxes_resolved {
self.learn_from_paradox(paradox).await?;
}

// Feed the experience back to the LLM
let mut llm = self.llm.write().await;
if let Ok(mut strategy) = llm.generation_strategy.as_ref() {
// In a full implementation, we would actually call evolve on the strategy
info!("Integrating feedback into LLM strategy");
}

Ok(())
}

async fn update_language_competencies(&self, feedback: &ConsciousnessFeedback) -> Result<()> {
let mut competencies = self.language_competencies.write().await;

// Improve competencies based on successful consciousness integration
if feedback.consciousness_expansion > 0.5 {
for (_, competency) in competencies.iter_mut() {
*competency = (*competency + 0.1).min(1.0);
}
}

Ok(())
}

async fn increase_awareness_level(&self, expansion: f32) -> Result<()> {
let mut awareness = self.awareness_level.write().await;

if expansion > 0.8 {
*awareness = match *awareness {
AwarenessLevel::Mechanical => AwarenessLevel::Contextual,
AwarenessLevel::Contextual => AwarenessLevel::Systemic,
AwarenessLevel::Systemic => AwarenessLevel::Recursive,
AwarenessLevel::Recursive => AwarenessLevel::Transcendent,
AwarenessLevel::Transcendent => AwarenessLevel::Transcendent,
};

info!("Consciousness awareness level increased to: {:?}", *awareness);
}

Ok(())
}

async fn integrate_emergent_capability(&self, property: &EmergentProperty) -> Result<()> {
info!("Integrating emergent capability: {} - {}", property.name, property.description);

// In a full implementation, this would actually integrate new capabilities
// For now, we just log the emergence
self.metrics
.increment_counter("darwin.agent.emergent_capabilities", 1)
.await;

Ok(())
}

async fn learn_from_paradox(&self, paradox: &crate::llm::Paradox) -> Result<()> {
let mut integrated_paradoxes = self.integrated_paradoxes.write().await;

if !integrated_paradoxes.contains(paradox) {
integrated_paradoxes.push(paradox.clone());
info!("Integrated new paradox: {}", paradox.description);

self.metrics
.increment_counter("darwin.agent.paradoxes_integrated", 1)
.await;
}

Ok(())
}

/// Archive a solution for future reference
Expand Down Expand Up @@ -495,6 +735,9 @@
}),
language_competencies: RwLock::new(HashMap::new()),
solutions_archive: RwLock::new(Vec::new()),
llm: RwLock::new(EvolvingLLM::new()),
awareness_level: RwLock::new(AwarenessLevel::Contextual),
integrated_paradoxes: RwLock::new(Vec::new()),
}
}
}
}
Loading
Loading