An advanced AI-powered trading bot for Quotex platform featuring real-time neural network learning, pattern recognition, and comprehensive monitoring.
- Deep Neural Network: 5-layer architecture with 20,000+ parameters
- Real-time Learning: Learns from every trade instantly
- Pattern Recognition: Identifies market patterns and trends
- Confidence Scoring: Knows how confident each prediction is
- Adaptive Training: Automatically retrains based on performance
- Incremental Learning: Continuous learning without forgetting
- Rolling Accuracy: Tracks success rate of last 50 trades
- Profit Tracking: Real-time profit/loss monitoring
- Streak Analysis: Win/loss streak tracking
- CSV Export: All data saved for analysis
- Performance Insights: Detailed statistics and recommendations
- Auto-trading: Automated trade execution
- Risk Management: Martingale strategy with smart recovery
- Multiple Assets: Support for various trading pairs
- Technical Indicators: RSI, MACD, Stochastic, SMA, EMA
- Strategy Adaptation: Aggressive/Balanced/Conservative modes
- Python 3.8 or higher
- Windows 10/11 (PowerShell)
- Quotex account
- Internet connection
- VPN for bot and website
git clone https://github.com/yourusername/pyquotex.git
cd pyquotex# Windows PowerShell
python -m venv myenv
myenv\Scripts\activatepip install -r requirements.txtEdit pyquotex/config.py and add your Quotex credentials:
def credentials():
return "your_email@example.com", "your_password"# Start auto-trading
python app.py auto-trade --amount 50 --asset EURUSD_otc --duration 60 --interval 60
# Check account balance
python app.py balance
# View real-time prices
python app.py realtime-price --asset EURJPY_otc# Check AI status
python app.py ml-status
# View learned patterns
python app.py ml-patterns
# Analyze performance
python app.py ml-analyze
# Neural network insights
python app.py nn-insights
# Monitor trading statistics
python app.py monitor-stats| Command | Description | Example |
|---|---|---|
auto-trade |
Start automated trading | python app.py auto-trade --amount 50 |
balance |
Check account balance | python app.py balance |
realtime-price |
View live prices | python app.py realtime-price --asset EURUSD_otc |
signals |
Get trading signals | python app.py signals |
| Command | Description | Example |
|---|---|---|
ml-status |
Show AI learning status | python app.py ml-status |
ml-analyze |
Analyze trading performance | python app.py ml-analyze |
ml-patterns |
View learned patterns | python app.py ml-patterns |
ml-save |
Save AI model | python app.py ml-save --name "my_model" |
ml-save-all |
Save all learning data | python app.py ml-save-all |
nn-insights |
Neural network analysis | python app.py nn-insights |
monitor-stats |
Trading statistics | python app.py monitor-stats |
| Command | Description | Example |
|---|---|---|
ml-incremental |
Manage incremental learning | python app.py ml-incremental --replay |
ml-incremental --buffer-size 2000 |
Set memory buffer size | python app.py ml-incremental --buffer-size 2000 |
Input Layer (36 features)
β
Batch Normalization
β
Dense Layer (128 units) + Dropout(0.3) + BatchNorm
β
Dense Layer (64 units) + Dropout(0.2) + BatchNorm
β
Dense Layer (32 units) + Dropout(0.2) + BatchNorm
β
Dense Layer (16 units) + Dropout(0.1)
β
Output Layer (1 unit, sigmoid)
- Candle Data: Open, Close, High, Low, Volume (5 candles Γ 5 = 25)
- Technical Indicators: SMA, EMA, RSI (3 each = 9)
- MACD: Signal, Histogram (2)
- Previous Trade: Result, Profit (2)
- Time: Hour of day (1)
- Batch Normalization: Prevents internal covariate shift
- Dropout Regularization: Prevents overfitting
- Learning Rate Decay: Adaptive learning rate
- Early Stopping: Prevents overtraining
- Model Checkpointing: Saves best model
[Neural Network] Prediction: CALL (confidence: 85%)
π [2024-09-14] Rolling Accuracy (last 5 trades): 80.00%
π° [2024-09-14] Last Trade Profit: R$ 5.00, Total Profit: R$ 25.00
π [2024-09-14] Trade #5 | Win Streak: 3 | Loss Streak: 0
π§ [2024-09-14] Strategy: AGGRESSIVE | Learning Confidence: 75%
All trading data is automatically saved to trade_metrics.csv:
- Timestamp
- Rolling accuracy
- Total profit
- Last trade profit
- Trade count
- Win/loss streaks
- Strategy
- Learning confidence
# In auto_trade method
amount = 50 # Trade amount
asset = "EURUSD_otc" # Trading pair
duration = 60 # Trade duration (seconds)
interval = 60 # Time between trades (seconds)# Neural network settings
feature_size = 36 # Input features
memory_buffer_size = 1000 # Experience replay buffer
incremental_batch_size = 32 # Mini-batch size
learning_rate = 0.001 # Initial learning rate# The bot automatically:
# 1. Learns from every trade
# 2. Retrains when performance drops
# 3. Saves models automatically
# 4. Adapts strategy based on resultsThe bot learns and recognizes:
- Candle Patterns: Doji, Hammer, Engulfing
- Indicator Patterns: RSI divergence, MACD crossovers
- Time Patterns: Best trading hours
- Market Conditions: Volatility, trends
- Aggressive: High confidence, larger positions
- Balanced: Moderate risk, steady growth
- Conservative: Low risk, small positions
pyquotex/
βββ app.py # Main application
βββ requirements.txt # Dependencies
βββ README.md # This file
βββ LICENSE # MIT License
βββ pyquotex/ # Core library
β βββ __init__.py
β βββ api.py
β βββ config.py
β βββ ...
βββ examples/ # Example scripts
βββ docs/ # Documentation
βββ models/ # Saved AI models (auto-created)
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
This software is for educational purposes only. Trading involves risk and you may lose money. Use at your own risk. The authors are not responsible for any financial losses.
This project is licensed under the MIT License - see the LICENSE file for details.
- Email: alet8319@gmail.com
- Phone: +92-3478042183
- Issues: GitHub Issues
- Team Jund Al Nabi for the original PyQuotex library
- TensorFlow team for the machine learning framework
- The open-source community for various dependencies
β If you find this project helpful, please give it a star!


