Skip to content

jongablop/fer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 

Repository files navigation

fer: Framework for Experimental Results

Data structure

We have developed a JSON schema for the fer data structure that includes the main and auxiliary data structures (such as QuantityValues, Measurement, and Source) and respects the nested relationships between them. You can download it from here.

See JSON schema
{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "FER Data Structure",
  "description": "Schema for experimental result file following the 'fer' data structure.",
  "type": "object",
  "properties": {
    "quantity_values": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "id": { "type": "string" },
          "name": { "type": "string" },
          "description": { "type": "string" },
          "changelog": {
            "type": "array",
            "items": { "$ref": "#/definitions/ChangelogEntry" }
          },
          "quantities": {
            "type": "array",
            "items": { "type": "string" }
          },
          "symbols": {
            "type": "array",
            "items": { "type": "string" }
          },
          "units": {
            "type": "array",
            "items": { "type": "string" }
          },
          "values": {
            "type": "array",
            "items": {
              "type": "array",
              "items": { "type": "number" }
            }
          },
          "standard_uncertainties": {
            "type": "array",
            "items": {
              "type": "array",
              "items": { "type": "number" }
            }
          },
          "coverages": {
            "type": "array",
            "items": { "$ref": "#/definitions/Coverage" }
          },
          "probability_density_functions": {
            "type": "array",
            "items": { "$ref": "#/definitions/ProbabilityDensityFunction" }
          },
          "correlation_indices": {
            "type": "array",
            "items": { "type": "integer" }
          }
        },
        "required": ["id", "name", "quantities", "units", "values", "standard_uncertainties"]
      }
    },
    "measurement": {
      "type": "object",
      "properties": {
        "id": { "type": "string" },
        "changelog": {
          "type": "array",
          "items": { "$ref": "#/definitions/ChangelogEntry" }
        },
        "description": { "type": "string" },
        "correct": { "type": "boolean" },
        "state": { "$ref": "#/definitions/State" },
        "results": {
          "type": "array",
          "items": { "$ref": "#/definitions/QuantityValues" }
        },
        "correlations": { "$ref": "#/definitions/Correlations" },
        "measurands": {
          "type": "array",
          "items": { "type": "string" }
        },
        "source": { "$ref": "#/definitions/Source" }
      },
      "required": ["id", "results", "source"]
    },
    "source": {
      "type": "object",
      "properties": {
        "id": { "type": "string" },
        "name": { "type": "string" },
        "description": { "type": "string" },
        "model": { "type": "string" },
        "influence_quantities": {
          "type": "array",
          "items": { "$ref": "#/definitions/QuantityValues" }
        },
        "input_quantities": {
          "type": "array",
          "items": { "$ref": "#/definitions/Measurement" }
        },
        "correlations": { "$ref": "#/definitions/Correlations" }
      },
      "required": ["id", "name", "input_quantities"]
    }
  },
  "definitions": {
    "ChangelogEntry": {
      "type": "object",
      "properties": {
        "timestamp": { "type": "string", "format": "date-time" },
        "user": { "type": "string" },
        "description": { "type": "string" }
      },
      "required": ["timestamp", "description"]
    },
    "State": {
      "type": "object",
      "properties": {
        "name": { "type": "string" },
        "description": { "type": "string" },
        "quantity_value": { "$ref": "#/definitions/QuantityValues" }
      }
    },
    "ProbabilityDensityFunction": {
      "type": "object",
      "properties": {
        "name": { "type": "string" },
        "parameters": {
          "type": "array",
          "items": { "type": "string" }
        },
        "values": {
          "type": "array",
          "items": { "type": "number" }
        }
      },
      "required": ["name", "parameters", "values"]
    },
    "Correlations": {
      "type": "object",
      "properties": {
        "quantities": {
          "type": "array",
          "items": { "type": "string" }
        },
        "correlation_matrix": {
          "type": "array",
          "items": {
            "type": "array",
            "items": { "type": "number" }
          }
        },
        "method": { "type": "string" }
      }
    },
    "Coverage": {
      "type": "object",
      "properties": {
        "intervals": {
          "type": "array",
          "items": {
            "type": "array",
            "items": { "type": "number" }
          }
        },
        "probabilities": {
          "type": "array",
          "items": { "type": "number" }
        },
        "degrees_of_freedom": {
          "type": "array",
          "items": { "type": "integer" }
        },
        "method": { "type": "string" }
      }
    }
  }
}

Examples

Implementations

A Python-based implementation of the fer data structure can be found here.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published