Jun-Jie Huang#(jjhuang@nudt.edu.cn), Tianrui Liu#*, Zihan Chen, Xinwang Liu, Meng Wang, and Pier Luigi Dragotti
IEEE Transactions on Pattern Analysis and Machine Intelligence 2025. (#equal contribution, *corresponding author)
Overview of the proposed Deep Exclusion unfolding Network (DExNet). DExNet consists of
- 7,643 images from the Pascal VOC dataset, center-cropped as 224 x 224 slices to synthesize training pairs.
- 90 real-world training pairs provided by Zhang et al.
- 45 real-world testing images from CEILNet dataset.
- 20 real testing pairs provided by Zhang et al.
- 454 real testing pairs from SIR^2 dataset, containing three subsets (i.e., Objects (200), Postcard (199), Wild (55)).
Download all in one by Google Drive or 百度云.
python train_sirs.py --inet DExNet --model DExNet_model_sirs --dataset sirs_dataset --loss losses --name DExNet --lambda_vgg 0.1 --lambda_rec 0.2 --lambda_excl 1 --if_align --seed 2018 --batchSize 1 --nEpochs 50 --lr 1e-4 --base_dir "[YOUR DATA DIR]"
python eval_sirs.py --inet DExNet --model DExNet_model_sirs --dataset sirs_dataset --name DExNet_test --hyper --if_align --resume --weight_path ./weights/DExNet.pt --base_dir "[YOUR_DATA_DIR]"
Download the trained weights by Google Drive and drop them into the "weights" dir.
@ARTICLE{Huang2025DExNet,
author={Huang, Jun-Jie and Liu, Tianrui and Chen, Zihan and Liu, Xinwang and Wang, Meng and Dragotti, Pier Luigi},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={A Lightweight Deep Exclusion Unfolding Network for Single Image Reflection Removal},
year={2025},
volume={},
number={},
pages={1-17},
doi={10.1109/TPAMI.2025.3548148}
}


