Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .devcontainer/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ USER $USERNAME

# install poetry for package management
RUN curl -sSL https://install.python-poetry.org | python3 -
ENV PATH="~/.local/bin:$PATH"
ENV PATH="/home/$USERNAME/.local/bin:$PATH"

WORKDIR $DIR

Expand Down
2 changes: 1 addition & 1 deletion .devcontainer/devcontainer.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"build": { "dockerfile": "Dockerfile", "context": ".." },
"runArgs": ["--gpus=all"],
"extensions": ["ms-python.python", "tamasfe.even-better-toml"],
"extensions": ["ms-python.python", "tamasfe.even-better-toml"]
}
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -150,3 +150,6 @@ cython_debug/
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

# VSCode
*.code-workspace
123 changes: 118 additions & 5 deletions poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,14 @@ requests = "^2.27.1"
numpy = "^1.22.0"
gym = "^0.21.0"
pandas = "^1.3.5"
torch = "^1.10.1"

[tool.poetry.dev-dependencies]
coverage = {extras = ["toml"], version = "^6.2"}
pytest = "^6.2.5"
pytest-cov = "^3.0.0"
pytest-mock = "^3.6.1"
black = "^21.12b0"

[tool.poetry.scripts]

Expand Down
76 changes: 76 additions & 0 deletions src/functionrl/algorithms/reinforce.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
from typing import Optional

import numpy as np
import torch
from functionrl.models import LinearNet
from functionrl.policies import (
evaluate_policy,
make_categorical_policy_from_model,
make_greedy_policy_from_model,
)
from torch import optim

from ..envs import make_frozen_lake
from ..experiences import gen_episodes


def reinforce(
make_env,
gamma: float = 1.0,
learning_rate: float = 1e-3,
n_episodes: int = 10000,
log_interval: int = 100,
eval_episodes: int = 1000,
seed: Optional[int] = None,
):
if seed is not None:
torch.manual_seed(seed)

env = make_env()
n_states = env.observation_space.n
n_actions = env.action_space.n

pi = LinearNet(n_states, n_actions)
print(pi)

optimizer = optim.Adam(pi.parameters(), lr=learning_rate)
policy = make_categorical_policy_from_model(pi)

losses = []
for i, episode in enumerate(gen_episodes(env, policy, n=n_episodes), start=1):
T = len(episode)
rewards = [exp.reward for exp in episode]
log_probs = [exp.policy_info["log_prob"] for exp in episode]
rets = np.empty(T, dtype=np.float32)
future_ret = 0.0
for t in reversed(range(T)):
future_ret = rewards[t] + gamma * future_ret
rets[t] = future_ret
rets = torch.tensor(rets)
# rets.sub_(rets.mean())
log_probs = torch.stack(log_probs)
loss = (-log_probs * rets).sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()

losses.append(loss.item())

if i % log_interval == 0:
eval_policy = make_greedy_policy_from_model(pi, n_states)
mean_return = evaluate_policy(make_env, eval_policy, eval_episodes)
mean_loss = np.array(losses[-log_interval:]).mean()
print(f"{i:5d} mean_return: {mean_return:.3f} - loss: {mean_loss:8.4f}")

return policy


if __name__ == "__main__": # pragma: no cover
reinforce(
make_frozen_lake,
gamma=0.99,
learning_rate=0.01,
n_episodes=10000,
seed=1,
eval_episodes=1000,
)
56 changes: 24 additions & 32 deletions src/functionrl/algorithms/tabular_q.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
from typing import Optional
import numpy as np
from ..utils import linear_decay
from ..policies import make_epsilon_greedy_policy, make_greedy_policy
from ..experiences import generate_experiences, generate_episodes
from ..policies import evaluate_policy, make_epsilon_greedy_policy, make_greedy_policy
from ..experiences import gen_experiences
from ..envs import make_frozen_lake
from ..display import print_pi, print_v

Expand All @@ -18,48 +19,40 @@ def tabular_q(
n_steps: int = 5000,
log_interval: int = 1000,
eval_episodes: int = 1000,
seed: Optional[int] = None,
):
env_train = make_env()
env_eval = make_env()
env = make_env()

n_states = env_train.observation_space.n
n_actions = env_train.action_space.n
n_states = env.observation_space.n
n_actions = env.action_space.n

q = np.zeros((n_states, n_actions))

alpha_decay = linear_decay(alpha_max, alpha_min, alpha_decay_steps)
epsilon_decay = linear_decay(epsilon_max, epsilon_min, epsilon_decay_steps)

q = np.zeros((n_states, n_actions))

# TODO: pass decay into make_eps
policy_train = make_epsilon_greedy_policy(
q, epsilon_max, epsilon_min, epsilon_decay_steps
)
policy_train = make_epsilon_greedy_policy(q, epsilon_decay, seed=seed)
policy_eval = make_greedy_policy(q)

for step, exp in enumerate(
generate_experiences(env_train, policy_train, n=n_steps)
):

td_target = (
exp.reward + gamma * float(not exp.is_done) * q[exp.next_state].max()
)
td_error = td_target - q[exp.state, exp.action]
for i, exp in enumerate(gen_experiences(env, policy_train, n=n_steps), start=1):
state, action, reward, next_state, is_done, policy_info = exp
td_target = reward + gamma * float(not is_done) * q[next_state].max()
td_error = td_target - q[state, action]

alpha = alpha_decay(step)
q[exp.state, exp.action] += alpha * td_error
alpha = alpha_decay(i)
q[state, action] += alpha * td_error

if (step + 1) % log_interval == 0:
episodes = list(generate_episodes(env_eval, policy_eval, n=eval_episodes))
returns = [sum(e.reward for e in episode) for episode in episodes]
mean_return = np.mean(returns)
print(
f"{step+1:5d}: {mean_return:.3f}, eps: {epsilon_decay(step):.3f}, alpha: {alpha:.6f}"
)
if i % log_interval == 0:
epsilon = policy_info["epsilon"]
mean_return = evaluate_policy(make_env, policy_eval, eval_episodes)
print(f"{i:5d}: {mean_return:.3f}, eps: {epsilon:.3f}, alpha: {alpha:.6f}")
pi = np.argmax(q, axis=1)
print_pi(pi)

return q


if __name__ == "__main__":
if __name__ == "__main__": # pragma: no cover
q = tabular_q(
make_frozen_lake,
gamma=1,
Expand All @@ -71,8 +64,7 @@ def tabular_q(
epsilon_decay_steps=100_000,
n_steps=100_000,
log_interval=10_000,
seed=0,
)
pi = np.argmax(q, axis=1)
print_pi(pi)
v = np.max(q, axis=1)
print_v(v)
Loading