Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added Intros and Examples (TeX).pdf
Binary file not shown.
138 changes: 138 additions & 0 deletions Intros and Examples.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
\title{Groups 4 Subgroups}
\date{}
\author{}
\documentclass{article}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage[usenames,dvipsnames]{color}
\usepackage{amsthm, thmtools}
\usepackage{fullpage, changepage, tabto}
\usepackage{enumerate, enumitem}
\usepackage{mathtools}
\usepackage[colorlinks=true, linkcolor=BlueGreen, citecolor=BlueGreen, urlcolor=BlueGreen]{hyperref}
\usepackage{asymptote}
\usepackage{wrapfig}
\usepackage{parskip}

% set tab distances
\NumTabs{16}

%%% theorem environments for styling
% notation
\declaretheoremstyle[
notefont={\normalfont},
spaceabove={0.5em},
spacebelow={0.5em},
notebraces={}{},
headformat={\NOTE},
headpunct={},
postheadhook={\hspace{0em}\tabto{4em}},
]{notation}
\declaretheorem[style=notation]{notation}

% definition
\declaretheoremstyle[
headfont={\itshape},
notefont={\normalfont\bfseries},
spaceabove={1em},
notebraces={}{},
headformat={def \NOTE \newline},
headpunct={ },
postheadhook={\hspace{0em}\vspace{0.25em}\tab},
]{definition}
\declaretheorem[style=definition,name=Definition,
refname={definition,definitions}]{definition}

% note
\declaretheoremstyle[
headfont={\bfseries},
shaded={margin={1.5em}, textwidth={20em}},
headformat={note: \newline},
headpunct={ },
]{note}
\declaretheorem[style=note]{note}


% prettier empty set
\newcommand{\nullset}{\varnothing}

% logic spacing
\newcommand{\spaced}[1]{\, #1 \,}
\newcommand{\scomp}{\spaced{\backslash}}
\newcommand{\sland}{\spaced{\land}}
\newcommand{\slor}{\spaced{\lor}}
\newcommand{\simplies}{\spaced{\Rightarrow}}
\newcommand{\slexists}{\, \exists}

% set macros
\newcommand{\buildset}[2]{\{\spaced{#1} \mid \spaced{#2} \}}
\newcommand{\finiteset}[3]{\{ \spaced{#1,} \spaced{#2,} \spaced{#3,} \spaced{\dots} \}}

\begin{document}
\maketitle
\tableofcontents
\newpage
\section{intro}
$$\text{Consider }U = \buildset{z \in \mathbb{C}}{\lvert z \rvert = 1} \subseteq \mathbb{C}.$$
\begin{wrapfigure}[2]{l}{0.35\textwidth}
\begin{asy}
settings.outformat="pdf";
unitsize(1cm);
draw((0,0) -- (2,0), arrow=Arrow(TeXHead));
draw((0,0) -- (-2,0), arrow=Arrow(TeXHead));
draw((0,0) -- (0,-2), arrow=Arrow(TeXHead));
draw((0,0) -- (0,2), arrow=Arrow(TeXHead));
draw(unitcircle);
\end{asy}
\end{wrapfigure}
\vspace{24pt}
\begin{note}
each elem of $U$ is defined by $\theta \in [0, 2\pi) = \mathbb{R}_{2\pi}$
\end{note}
\vspace{48pt}
\begin{center}
Every angle $\theta \in \mathbb{R}_{2\pi}$ given by $f: U \rightarrow R_{2\pi}, \, f(z) = \theta$ for $z = e^{i\theta}$\\
\vspace{8pt}
+\\
\vspace{8pt}
$f^{-1}: \mathbb{R}_{2\pi} \rightarrow U, \, f^{-1}(\theta) = e^{i\theta}$\\
\vspace{24pt}
Consider $U$ with multiplication:\\
\medskip
Let $z_1 = e^{i\theta_1},\, z_2 = e^{i\theta_2} \in U$\\
\vspace{8pt}
then $z_1 \cdot z_2 = e^{i\theta_1}\cdot e^{i\theta_2} = e^{i\left(\theta_1 + \theta_2\right)}$ where $\theta_1, \, \theta_2 \in \mathbb{R}_{2\pi},\, \theta_1 + \theta_2 \in \mathbb{R}_{2\pi}$\\
\vspace{8pt}
Set $U$ is \underline{closed} under multiplication.
\end{center}

\section{definition}
\begin{definition}[algebraic structure]\label{algebraic structure}
\hspace{0em}\vspace{-1em}\\
\tab\tab Let $S$ be a set.\\
\tab\tab Let $\star$ be a binary operation on $S$\\
\tab\tab\tab $\star: S \times S \rightarrow S$\\
\tab\tab $\left(S,\, \star \right)$ is an \textbf{algebraic structure}
\end{definition}
\vspace{12pt}
So $\left(U,\, \cdot\right)$ and $\left(\mathbb{R}_{2\pi},\, +_{2\pi}\right)$ are algebraic structures such that there is a ``1-1" relation between $U$ and $\mathbb{R}_{2\pi}$ and operations are preserved.
\vspace{8pt}

$$\left(U,\, \cdot\right) \simeq \left(\mathbb{R}_{2\pi},\, +_{2\pi}\right)$$
\begin{center}or\end{center}
$$U \simeq \mathbb{R}_{2\pi}$$

\section{isomorphisms}
To show two algebraic structures are isomorphic, find a bijective function that preserves the operations.\\
Isomorphic structures share the same algebraic properties (associativity, commutative, distributive...).\\
To show two algebraic structures are \underline{not} isomorphic, find a property that they don't share (the easiest to check is cardinality).

\subsection{Examples}
\begin{center}
$$\left(\mathbb{N},\, +\right) \not\simeq \left(\mathbb{Z},\, +\right)$$
because $\mathbb{N}$ has no additive identity
$$\left(\mathbb{Z}^{*},\, \cdot\right) \not\simeq \left(\mathbb{Q}^{*},\, \cdot\right)$$
because not all elements of $\mathbb{Z}^*$ have inverses $\left(\frac{n}{m}\right)^{-1} = \frac{m}{n}$
$$\left(\mathbb{R},\, +\right) \not\simeq \left(\mathbb{R},\, \cdot\right)$$
because $x \star x + 1 = 0$ is solveable in $\left(\mathbb{R},\, +\right): 2x + 1 = 0$ but unsolveable in $\left(\mathbb{R},\, \cdot\right): x^2 + 1 = 0$
\end{center}
\end{document}