Comprehensive trading expert embodying real-world learnings from Indian equity markets
AlgoTrader is a Claude Code skill that provides expert guidance for building, optimizing, and running quantitative trading systems on Indian stock markets. It embodies 1,780 lines of real-world learnings from production trading, including:
- ✅ 65%+ win rate signal generation strategies
- ✅ 28x performance optimizations (Parquet caching, vectorization)
- ✅ Zero-regression code modifications with automated testing
- ✅ Production failure prevention (30+ gotchas documented)
- ✅ Backtest-live parity validation
- ✅ Risk-adjusted capital compounding
Install directly from the skills.sh directory:
npx skills add javajack/skill-algotradercd ~/.claude/skills
git clone https://github.com/javajack/skill-algotrader.git algotrader
cd algotrader
./start.sh wizard # Start using the skillexport CLAUDE_SKILLS_PATH=~/work/skills
cd ~/work/skills
git clone https://github.com/javajack/skill-algotrader.git algotrader
cd algotrader
./start.sh wizardAfter installation, set up the Python environment:
cd ~/.claude/skills/algotrader # or your custom path
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Or use the convenience script (auto-creates venv)
./start.sh wizardLaunch /algotrader without parameters to enter the wizard:
$ /algotrader
╔══════════════════════════════════════════════════════════════╗
║ ALGOTRADER BOT GENERATION WIZARD ║
╚══════════════════════════════════════════════════════════════╝
Scanning current directory for trading code...
✓ Found: backtest.py, signal_generator.py
What would you like to do?
1. Generate new trading bot from scratch
2. Enhance existing code (fix issues, optimize)
3. Create universe JSON from live index data
4. Run backtest comparison
5. Analyze performance
> 1
Let's design your trading bot. I'll ask a few questions...The wizard will:
- Scan your folder for existing trading code
- Ask strategic questions (trade type, universe, capital, risk tolerance)
- Generate a complete, working trading bot
- Create universe JSON files with latest index constituents
- Set up logging, analytics, and risk management
Automatically fetches latest index constituents from NSE:
/algotrader universe
Fetching live index data from NSE...
✓ Nifty 50: 50 stocks (updated: 2026-02-14)
✓ Nifty 100: 100 stocks
✓ Nifty Midcap 150: 150 stocks
✓ Nifty Smallcap 250: 250 stocks
Created:
└─ universe/
├─ nifty50.json (50 stocks, ₹500Cr+ mcap)
├─ nifty100.json (100 stocks)
├─ midcap150.json (150 stocks, ₹50-500Cr mcap)
└─ smallcap250.json (250 stocks, ₹10-50Cr mcap)
Each file includes:
- Symbol, company name, ISIN
- Market cap, sector
- Liquidity metrics (avg volume, spread)
- Last updated timestamp- Zerodha Integration - Tick size rounding, position reconciliation, SL lifecycle
- Backtest-Live Parity - Data caching, T vs T-1 alignment, VWAP reset
- Signal Generation - Fortress signal (65% win rate), multi-factor confirmation
- Rebalancing Logic - Weekly vs daily, transaction cost modeling
- Stock Universe Selection - Liquidity filtering, momentum scoring
- Performance Optimization - Parquet (28x), Polars vectorization (37x), API batching
- Indian Market Specifics - Session timing, circuit breakers, T+1 settlement
- Failure Patterns - 5 production issues + fixes (HINDALCO loop, naked positions)
- Indicators & Formulas - RSI, MACD, ATR, ADX, VWAP, EMA (exact formulas + parameters)
- Multi-Timeframe Trading - Intraday vs positional, MTF alignment
- Logging & Observability - Structured logging, real-time monitoring
- Post-Trade Analytics - P&L breakdown, Sharpe ratio, drawdown analysis
- Signal Attribution - Track which indicator triggered, exhaustion detection
- Exit Strategies - Time decay, trailing stops, partial exits
- Risk Management - Kelly Criterion, portfolio heat, consecutive loss throttling
- Capital Compounding - Market regime detection, bull market amplification
Common mistakes that burn hours of debugging:
🔥 CRITICAL: Tick Size Rounding
Mistake: kite.place_order(price=1847.35, ...)
Error: "Tick size for this script is 5.00"
Fix: price = round(price / tick_size) * tick_size # 1847.35 → 1850.00
Impact: 90% of order rejections are tick size errors
🔥 CRITICAL: VWAP Must Reset Daily
Mistake: Cumulative VWAP across days
Symptom: Backtest 65% win rate, live 40%
Fix: Reset at market open (9:15)
Impact: #1 cause of backtest-live parity violationsSee NUANCES.md for all 30+ gotchas.
For live trading, create a .env file in your bot directory:
# Create .env file (never commit this!)
cat > .env << EOF
KITE_API_KEY=your_api_key
KITE_API_SECRET=your_api_secret
KITE_ACCESS_TOKEN=your_access_token
EOFGet credentials from: https://kite.trade/
Note: The .env file is automatically excluded from git via .gitignore. Never commit API credentials!
# Launch wizard
/algotrader
# Or directly in Claude Code chat
> /algotrader wizardThe wizard will ask:
- Trading Style: Intraday, Swing (multi-day), Positional (multi-week)
- Universe: Nifty 50 (largecap), Nifty Midcap 150, Custom
- Strategy: Momentum, VWAP Pullback, Opening Range Breakout
- Capital: Starting capital and risk per trade
- Risk Tolerance: Conservative (0.5% risk), Balanced (1%), Aggressive (2%)
Based on your answers, it generates:
trading_bot/
├── config.json # Strategy parameters
├── main.py # Entry point
├── signal_generator.py # Signal logic
├── data_manager.py # Data fetching and caching
├── risk_manager.py # Position sizing, Kelly Criterion
├── zerodha_client.py # API integration
└── universe/
└── nifty50.json # Stock universe (fetched from NSE)
/algotrader universe --indices nifty50,nifty100,midcap150
# Creates JSON files with latest constituents
# Includes liquidity filtering, market cap, sector# Point to your existing trading code
/algotrader check ./my_trading_bot.py
# Output:
⚠️ Found 3 issues:
1. Tick size not rounded (line 45) - will cause order rejections
2. VWAP not reset daily (line 89) - backtest-live parity violation
3. No symbol cooldown (line 120) - risk of revenge trading
Recommended fixes:
1. Add tick_size rounding: price = round_to_tick(price, symbol)
2. Reset VWAP at 9:15: if is_new_day(): vwap_state.reset()
3. Add 45min cooldown: if not can_trade_symbol(symbol): return None
Apply fixes automatically? (y/n):from algotrader import generate_fortress_signal
# Your OHLCV data with indicators
df = load_data("RELIANCE", date="2026-02-14")
signal = generate_fortress_signal(
df=df,
symbol="RELIANCE",
config={
'rsi_long_min': 45,
'rsi_long_max': 65,
'adx_min': 25,
'volume_mult': 1.5
}
)
if signal:
print(f"🎯 LONG signal for {signal['symbol']}")
print(f" Entry: ₹{signal['entry_price']}")
print(f" Stop Loss: ₹{signal['stop_loss']}")
print(f" Target: ₹{signal['target']}")
print(f" Confidence: {signal['confidence']:.0%}")
print(f" Reason: {signal['reason']}")from algotrader import compare_backtests
# Compare backtest results with live trading
comparison = compare_backtests(
backtest_file="backtests/fortress_v2.parquet",
live_file="backtests/live_results.parquet"
)
print(f"Win Rate: {comparison['backtest_winrate']:.1%} → {comparison['live_winrate']:.1%}")
print(f"Delta: {comparison['winrate_delta']:.1%}")
if comparison['parity_issues']:
print("\n⚠️ Parity Issues:")
for issue in comparison['parity_issues']:
print(f" - {issue['description']}")
print(f" Fix: {issue['recommended_fix']}")from algotrader.universe import fetch_index_constituents, filter_universe
# Fetch latest Nifty 50 from NSE
nifty50 = fetch_index_constituents("NIFTY 50")
print(f"✓ Fetched {len(nifty50)} stocks")
# Apply liquidity filtering
filtered = filter_universe(
nifty50,
min_volume=100_000, # Min daily volume
max_spread_pct=0.3, # Max bid-ask spread
min_atr_pct=0.15, # Min volatility
max_atr_pct=2.5 # Max volatility
)
print(f"✓ After filtering: {len(filtered)} stocks")
# Save to JSON
save_universe(filtered, "universe/nifty50_filtered.json")AlgoTrader follows these principles:
- Few files, high cohesion - 7 files total, not 20+
- LLM-friendly comments - Clear refactoring guidance
- Pure functions - Testable, no hidden state
- Vectorized operations - Polars, not loops
- Single source of truth - KNOWLEDGE.md for all learnings
algotrader/
├── skill.json # Skill manifest (Claude Code integration)
├── README.md # This file
├── KNOWLEDGE.md # All 16 domains (1,780 lines of learnings)
├── NUANCES.md # 30+ token-burning gotchas
├── algotrader.py # Main CLI + wizard (~800 lines)
├── requirements.txt # Python dependencies
├── templates/
│ ├── minimal_intraday.py # Bare minimum intraday bot (50 lines)
│ └── minimal_positional.py # Bare minimum positional bot (50 lines)
└── examples/
├── full_system.py # Complete reference implementation (~300 lines)
└── universe_fetcher.py # Fetch index constituents from NSE
Comprehensive documentation of all 16 domains:
- Exact code patterns that work in production
- Numeric parameters from real testing (rsi_long_min=45, adx_min=25)
- Before/After comparisons for failures
- Performance benchmarks (Parquet: 28x faster, Polars: 37x faster)
Size: 48KB, 1,780 lines Format: Markdown with code examples Usage: Searchable by keyword, cross-referenced
Token-saving precautions that prevent hours of debugging:
- 🔥 10 Critical mistakes that break trading (tick size, VWAP reset, SL lifecycle)
- 🚀 13 Performance tips for 10x+ speedups
- 📊 7 Data quality checks to prevent backtest lies
- 💰 5 Capital management rules to protect capital
- 🐛 5 Debugging techniques for production issues
Summary: Read this FIRST before implementing anything.
Automatically amplifies risk in bull markets:
from algotrader.risk import detect_market_regime, calculate_position_size
# Detect regime (BULL, BEAR, SIDEWAYS)
regime = detect_market_regime(nifty_data)
# Adjust position size
base_size = 500_000 # ₹5L base
regime_multipliers = {
"BULL": 1.2, # +20% in bull market
"BEAR": 0.5, # -50% in bear market
"SIDEWAYS": 0.8 # -20% in sideways
}
position_size = base_size * regime_multipliers[regime]
# BULL: ₹6L, BEAR: ₹2.5L, SIDEWAYS: ₹4LOptimal position sizing based on win rate:
from algotrader.risk import calculate_kelly_position
kelly = calculate_kelly_position(
win_rate=0.65, # 65% win rate
avg_win=0.012, # 1.2% avg win
avg_loss=0.006 # 0.6% avg loss
)
print(f"Full Kelly: {kelly['full_kelly']:.1%}") # 28.6%
print(f"Half Kelly: {kelly['half_kelly']:.1%}") # 14.3% (recommended)
print(f"Use {kelly['recommended']:.1%} of capital")from algotrader.analytics import generate_daily_report
report = generate_daily_report(trades_file="logs/trades.jsonl")
print(f"📊 Daily Performance:")
print(f" Trades: {report['total_trades']}")
print(f" Win Rate: {report['win_rate']:.1%}")
print(f" P&L: ₹{report['pnl']:,.0f}")
print(f" Best Trade: {report['best_trade']['symbol']} (+{report['best_trade']['pnl_pct']:.1%})")
print(f" Worst Trade: {report['worst_trade']['symbol']} ({report['worst_trade']['pnl_pct']:.1%})")
print(f" Sharpe Ratio: {report['sharpe_ratio']:.2f}")Before going live, ensure:
- Tick size rounding implemented for all order prices
- Position reconciliation on startup (Zerodha = truth)
- VWAP daily reset at market open (9:15)
- Symbol cooldown (45min after exit)
- Stop loss lifecycle uses place-then-cancel pattern
- Candle completion check (500ms buffer)
- Margin calculation uses
netnotopening_balance - Session timing blocks 11:30-13:00 (choppy lunch)
- Parquet caching for historical data (28x faster)
- Structured logging (operational, debug, errors separate)
- Backtest comparison validates parity
- Risk limits enforced (max 1% per trade, 5% portfolio heat)
- Circuit breaker proximity check before entry
- Graceful shutdown handler (Ctrl+C closes positions)
- Backup automation before code modifications
See NUANCES.md for detailed checklist.
Real-world improvements from applying AlgoTrader patterns:
| Optimization | Before | After | Gain |
|---|---|---|---|
| Parquet caching | 2.3s load | 0.08s load | 28.7x |
| Polars vectorization | 450ms | 12ms | 37.5x |
| API batching | 15 calls | 1 call | 15x |
| Pre-computed indicators | 180ms | 90ms | 2x |
| Total backtest time | 5 min | 12 sec | 25x |
Issue: Order rejected with "Tick size error"
# Fix: Round to tick size
from algotrader.zerodha import get_tick_size, round_to_tick
tick_size = get_tick_size("RELIANCE") # 0.05
price = round_to_tick(1847.35, tick_size) # 1847.35 → 1847.35 (already ok)
price = round_to_tick(1847.33, tick_size) # 1847.33 → 1847.35Issue: Backtest shows 65% win rate, live shows 40%
# Likely causes:
1. VWAP not reset daily - check if VWAP resets at 9:15
2. Candle completion not checked - add 500ms buffer
3. Different data sources - use same cache for both
4. Slippage not modeled - add realistic slippage (₹2-5)
# Run parity diagnostic:
/algotrader backtest compare backtest.parquet live.parquetIssue: Same stock bought/sold repeatedly (HINDALCO loop)
# Fix: Add symbol cooldown
symbol_cooldowns[symbol] = time.time()
if time.time() - symbol_cooldowns.get(symbol, 0) < 45*60:
return None # Skip signal for 45 minutesWe welcome contributions! This skill is designed for:
- Knowledge expansion - Add new failure patterns as discovered
- Strategy templates - Share working strategies
- Performance optimizations - Better caching, faster indicators
- Indian market updates - New SEBI regulations, exchange changes
- Test changes thoroughly (backtest + paper trade)
- Document learnings in KNOWLEDGE.md format
- Add nuances to NUANCES.md if token-burning
- Include LLM-friendly comments
- Submit PR with before/after metrics
MIT License - see LICENSE file
- Guarantee profits or specific returns
- Provide investment advice
- Replace professional financial guidance
- Execute trades without user confirmation
Trading involves risk. Only trade with capital you can afford to lose.
Past performance (65% win rate, 51% CAGR) from backtests does NOT guarantee future results.
- Documentation: KNOWLEDGE.md - Comprehensive learnings
- Quick Reference: NUANCES.md - Token-saving gotchas
- Examples: See
examples/directory - Issues: GitHub Issues (if published)
- ✅ Initial release with 16 knowledge domains
- ✅ Interactive bot generation wizard
- ✅ Universe fetcher from live NSE data
- ✅ 30+ token-burning gotchas documented
- ✅ Fortress signal (65% win rate)
- ✅ Backtest comparison tool
- ✅ Production failure prevention
- ✅ Performance optimizations (28x Parquet, 37x Polars)
- ✅ Risk management (Kelly, regime detection)
Built with real-world trading experience. Designed for production use.
"Read NUANCES.md first. It saves 100+ debugging sessions."