Declaratively define data schemas in your Ruby objects, and use them to whitelist, validate or transform inputs to your programs.
Useful for building self-documeting APIs, search or form objects. Or possibly as an alternative to Rails' strong parameters (it has no dependencies on Rails and can be used stand-alone).
Define a schema
schema = Parametric::Schema.new do
field(:title).type(:string).present
field(:status).options(["draft", "published"]).default("draft")
field(:tags).type(:array)
endPopulate and use. Missing keys return defaults, if provided.
form = schema.resolve(title: "A new blog post", tags: ["tech"])
form.output # => {title: "A new blog post", tags: ["tech"], status: "draft"}
form.errors # => {}Undeclared keys are ignored.
form = schema.resolve(foobar: "BARFOO", title: "A new blog post", tags: ["tech"])
form.output # => {title: "A new blog post", tags: ["tech"], status: "draft"}Validations are run and errors returned
form = schema.resolve({})
form.errors # => {"$.title" => ["is required"]}If options are defined, it validates that value is in options
form = schema.resolve({title: "A new blog post", status: "foobar"})
form.errors # => {"$.status" => ["expected one of draft, published but got foobar"]}A schema can have nested schemas, for example for defining complex forms.
person_schema = Parametric::Schema.new do
field(:name).type(:string).required
field(:age).type(:integer)
field(:friends).type(:array).schema do
field(:name).type(:string).required
field(:email).policy(:email)
end
endIt works as expected
results = person_schema.resolve(
name: "Joe",
age: "38",
friends: [
{name: "Jane", email: "jane@email.com"}
]
)
results.output # => {name: "Joe", age: 38, friends: [{name: "Jane", email: "jane@email.com"}]}Validation errors use JSON path expressions to describe errors in nested structures
results = person_schema.resolve(
name: "Joe",
age: "38",
friends: [
{email: "jane@email.com"}
]
)
results.errors # => {"$.friends[0].name" => "is required"}You can optionally use an existing schema instance as a nested schema:
FRIENDS_SCHEMA = Parametric::Schema.new do
field(:friends).type(:array).schema do
field(:name).type(:string).required
field(:email).policy(:email)
end
end
person_schema = Parametric::Schema.new do
field(:name).type(:string).required
field(:age).type(:integer)
# Nest friends_schema
field(:friends).type(:array).schema(FRIENDS_SCHEMA)
endNote that person_schema's definition has access to FRIENDS_SCHEMA because it's a constant.
Definition blocks are run in the context of the defining schema instance by default.
To preserve the original block's context, declare two arguments in your block, the defining schema sc and options has.
person_schema = Parametric::Schema.new do |sc, options|
# this block now preserves its context. Call `sc.field` to add fields to the current schema.
sc.field(:name).type(:string).required
sc.field(:age).type(:integer)
# We now have access to local variables
sc.field(:friends).type(:array).schema(friends_schema)
endYou can use Field#tagged_one_of to resolve a nested schema based on the value of a top-level field.
user_schema = Parametric::Schema.new do |sc, _|
field(:name).type(:string).present
field(:age).type(:integer).present
end
company_schema = Parametric::Schema.new do
field(:name).type(:string).present
field(:company_code).type(:string).present
end
schema = Parametric::Schema.new do |sc, _|
# Use :type field to locate the sub-schema to use for :sub
sc.field(:type).type(:string)
# Use the :one_of policy to select the sub-schema based on the :type field above
sc.field(:sub).type(:object).tagged_one_of do |sub|
sub.index_by(:type)
sub.on('user', user_schema)
sub.on('company', company_schema)
end
end
# The schema will now select the correct sub-schema based on the value of :type
result = schema.resolve(type: 'user', sub: { name: 'Joe', age: 30 })
# Instances can also be created separately and used as a policy:
UserOrCompany = Parametric::TaggedOneOf.new do |sc, _|
sc.on('user', user_schema)
sc.on('company', company_schema)
end
schema = Parametric::Schema.new do |sc, _|
sc.field(:type).type(:string)
sc.field(:sub).type(:object).policy(UserOrCompany.index_by(:type))
end#index_by can take a block to decide what value to resolve schemas by:
sc.field(:sub).type(:object).tagged_one_of do |sub|
sub.index_by { |payload| payload[:entity_type] }
sub.on('user', user_schema)
sub.on('company', company_schema)
endYou can use Field#one_of to validate a field against multiple possible schemas and accept the first one that validates successfully.
Unlike tagged_one_of, this doesn't require a discriminator field - it tries each schema in order until it finds one that validates the input data.
user_schema = Parametric::Schema.new do |sc, _|
sc.field(:name).type(:string).present
sc.field(:age).type(:integer).present
end
company_schema = Parametric::Schema.new do |sc, _|
sc.field(:company_name).type(:string).present
sc.field(:company_code).type(:string).present
end
schema = Parametric::Schema.new do |sc, _|
# This field can be either a user or company object
# The schema will try user_schema first, then company_schema
sc.field(:entity).type(:object).one_of(user_schema, company_schema)
end
# This will validate against user_schema (first match)
result = schema.resolve(entity: { name: 'Joe', age: 30 })
result.output # => { entity: { name: 'Joe', age: 30 } }
# This will validate against company_schema (user_schema fails, so it tries company_schema)
result = schema.resolve(entity: { company_name: 'Acme Corp', company_code: 'ACME' })
result.output # => { entity: { company_name: 'Acme Corp', company_code: 'ACME' } }The validation fails if:
- No schemas match the input data
- Multiple schemas match the input data (ambiguous)
# This fails because it doesn't match either schema
result = schema.resolve(entity: { invalid_field: 'value' })
result.valid? # => false
result.errors # => { "$.entity" => ["No valid sub-schema found"] }When used with Parametric::Struct, one_of automatically creates multiple nested struct classes:
class MyStruct
include Parametric::Struct
schema do |sc, _|
sc.field(:data).type(:object).one_of(user_schema, company_schema)
end
end
# The appropriate struct class will be instantiated based on which schema validates
instance = MyStruct.new!(data: { name: 'Joe', age: 30 })
instance.data # => #<MyStruct::Data2:...> (User struct)
instance.data.name # => 'Joe'This helper turns a custom object into a policy. The object must respond to .coerce(value) and return something that responds to #errors() Hash.
UserType = Data.define(:name) do
def self.coerce(value)
return value if value.is_a?(self)
new(value)
end
def errors
return { name: ['cannot be blank'] } if name.nil? || name.strip.empty?
{}
end
end
schema = Parametric::Schema.new do
field(:user).wrap(UserType).present
endType coercions (the type method) and validations (the validate method) are all policies.
Parametric ships with a number of built-in policies.
Calls :to_s on the value
field(:title).type(:string)Calls :to_i on the value
field(:age).type(:integer)Calls :to_f on the value
field(:price).type(:number)Returns true or false (nil is converted to false).
field(:published).type(:boolean)Attempts parsing value with Datetime.parse. If invalid, the error will be added to the output's errors object.
field(:expires_on).type(:datetime)Check value against custom regexp
field(:salutation).policy(:format, /^Mr\/s/)
# optional custom error message
field(:salutation).policy(:format, /^Mr\/s\./, "must start with Mr/s.")field(:business_email).policy(:email)Check that the key exists in the input.
field(:name).required
# same as
field(:name).policy(:required)Note that required does not validate that the value is not empty. Use present for that.
Check that the key exists and the value is not blank.
field(:name).present
# same as
field(:name).policy(:present)If the value is a String, it validates that it's not blank. If an Array, it checks that it's not empty. Otherwise it checks that the value is not nil.
Check that a key exists in the input, or stop any further validations otherwise. This is useful when chained to other validations. For example:
field(:name).declared.presentThe example above will check that the value is not empty, but only if the key exists. If the key doesn't exist no validations will run. Note that any defaults will still be returned.
field(:name).declared.present.default('return this')Like :declared, it stops the policy chain if a key is not in input, but it also skips any default value.
field(:name).policy(:declared_no_default).presentCheck that key is present in input. If value is nil, processing and validations stop, but key is still included in output.
schema = Parametric::Schema.new do
field(:age).nullable.type(:integer).policy(:gt: 21)
end
schema.resolve(age: '22').output[:age] # 22
schema.resolve(age: 10).errors[:age] # has error because < 21
schema.resolve(age: nil).output[:age] # nil, no errors
schema.resolve({}).output[:age] # nil, no errorsValidate that the value is greater than a number
field(:age).policy(:gt, 21)Validate that the value is less than a number
field(:age).policy(:lt, 21)Pass allowed values for a field
field(:status).options(["draft", "published"])
# Same as
field(:status).policy(:options, ["draft", "published"])Split comma-separated string values into an array. Useful for parsing comma-separated query-string parameters.
field(:status).policy(:split) # turns "pending,confirmed" into ["pending", "confirmed"]A policy to return a static value
field(:currency).policy(:value, 'gbp') # this field always resolves to 'gbp'You can also register your own custom policy objects. A policy consist of the following:
- A
PolicyFactoryinterface:
class MyPolicy
# Initializer signature is up to you.
# These are the arguments passed to the policy when using in a Field,
# ex. field(:name).policy(:my_policy, 'arg1', 'arg2')
def initialize(arg1, arg2)
@arg1, @arg2 = arg1, arg2
end
# @return [Hash]
def meta_data
{ type: :string }
end
# Buld a Policy Runner, which is instantiated
# for each field when resolving a schema
# @param key [Symbol]
# @param value [Any]
# @option payload [Hash]
# @option context [Parametric::Context]
# @return [PolicyRunner]
def build(key, value, payload:, context:)
MyPolicyRunner.new(key, value, payload, context)
end
end- A
PolicyRunnerinterface.
class MyPolicyRunner
# Initializer is up to you. See `MyPolicy#build`
def initialize(key, value, payload, context)
end
# Should this policy run at all?
# returning [false] halts the field policy chain.
# @return [Boolean]
def eligible?
true
end
# If this policy is not eligible, should the key and value be included in the output?
# @return [Boolean]
def include_non_eligible_in_ouput?
true
end
# If [false], add [#message] to result errors and halt processing field.
# @return [Boolean]
def valid?
true
end
# Coerce the value, or return as-is.
# @return [Any]
def value
@value
end
# Error message for this policy
# @return [String]
def message
"#{@value} is invalid"
end
endThen register your custom policy factory:
Parametric.policy :my_polict, MyPolicyAnd then refer to it by name when declaring your schema fields
field(:title).policy(:my_policy, 'arg1', 'arg2')You can chain custom policies with other policies.
field(:title).required.policy(:my_policy, 'arg1', 'arg2')Note that you can also register instances.
Parametric.policy :my_policy, MyPolicy.new('arg1', 'arg2')For example, a policy that can be configured on a field-by-field basis:
class AddJobTitle
def initialize(job_title)
@job_title = job_title
end
def build(key, value, payload:, context:)
Runner.new(@job_title, key, value, payload, context)
end
def meta_data
{}
end
class Runner
attr_reader :message
def initialize(job_title, key, value, payload, _context)
@job_title = job_title
@key, @value, @payload = key, value, payload
@message = 'is invalid'
end
def eligible?
true
end
def valid?
true
end
def value
"#{@value}, #{@job_title}"
end
end
end
# Register it
Parametric.policy :job_title, AddJobTitleNow you can reuse the same policy with different configuration
manager_schema = Parametric::Schema.new do
field(:name).type(:string).policy(:job_title, "manager")
end
cto_schema = Parametric::Schema.new do
field(:name).type(:string).policy(:job_title, "CTO")
end
manager_schema.resolve(name: "Joe Bloggs").output # => {name: "Joe Bloggs, manager"}
cto_schema.resolve(name: "Joe Bloggs").output # => {name: "Joe Bloggs, CTO"}For simple policies that don't need all policy methods, you can:
Parametric.policy :cto_job_title do
coerce do |value, key, context|
"#{value}, CTO"
end
end
# use it
cto_schema = Parametric::Schema.new do
field(:name).type(:string).policy(:cto_job_title)
endParametric.policy :over_21_and_under_25 do
coerce do |age, key, context|
age.to_i
end
validate do |age, key, context|
age > 21 && age < 25
end
endThe #clone method returns a new instance of a schema with all field definitions copied over.
new_schema = original_schema.cloneNew copies can be further manipulated without affecting the original.
# See below for #policy and #ignore
new_schema = original_schema.clone.policy(:declared).ignore(:id) do |sc|
field(:another_field).present
endThe #merge method will merge field definitions in two schemas and produce a new schema instance.
basic_user_schema = Parametric::Schema.new do
field(:name).type(:string).required
field(:age).type(:integer)
end
friends_schema = Parametric::Schema.new do
field(:friends).type(:array).schema do
field(:name).required
field(:email).policy(:email)
end
end
user_with_friends_schema = basic_user_schema.merge(friends_schema)
results = user_with_friends_schema.resolve(input)Fields defined in the merged schema will override fields with the same name in the original schema.
required_name_schema = Parametric::Schema.new do
field(:name).required
field(:age)
end
optional_name_schema = Parametric::Schema.new do
field(:name)
end
# This schema now has :name and :age fields.
# :name has been redefined to not be required.
new_schema = required_name_schema.merge(optional_name_schema)The #meta field method can be used to add custom meta data to field definitions.
These meta data can be used later when instrospecting schemas (ie. to generate documentation or error notices).
create_user_schema = Parametric::Schema.do
field(:name).required.type(:string).meta(label: "User's full name")
field(:status).options(["published", "unpublished"]).default("published")
field(:age).type(:integer).meta(label: "User's age")
field(:friends).type(:array).meta(label: "User friends").schema do
field(:name).type(:string).present.meta(label: "Friend full name")
field(:email).policy(:email).meta(label: "Friend's email")
end
endA Schema instance has a #structure method that allows instrospecting schema meta data.
create_user_schema.structure[:name][:label] # => "User's full name"
create_user_schema.structure[:age][:label] # => "User's age"
create_user_schema.structure[:friends][:label] # => "User friends"
# Recursive schema structures
create_user_schema.structure[:friends].structure[:name].label # => "Friend full name"Note that many field policies add field meta data.
create_user_schema.structure[:name][:type] # => :string
create_user_schema.structure[:name][:required] # => true
create_user_schema.structure[:status][:options] # => ["published", "unpublished"]
create_user_schema.structure[:status][:default] # => "published"The #walk method can recursively walk a schema definition and extract meta data or field attributes.
schema_documentation = create_user_schema.walk do |field|
{type: field.meta_data[:type], label: field.meta_data[:label]}
end.output
# Returns
{
name: {type: :string, label: "User's full name"},
age: {type: :integer, label: "User's age"},
status: {type: :string, label: nil},
friends: [
{
name: {type: :string, label: "Friend full name"},
email: {type: nil, label: "Friend email"}
}
]
}When passed a symbol, it will collect that key from field meta data.
schema_labels = create_user_schema.walk(:label).output
# returns
{
name: "User's full name",
age: "User's age",
status: nil,
friends: [
{name: "Friend full name", email: "Friend email"}
]
}Potential uses for this are generating documentation (HTML, or JSON Schema, Swagger, or maybe even mock API endpoints with example data.
You can use schemas and fields on their own, or include the DSL module in your own classes to define form objects.
require "parametric/dsl"
class CreateUserForm
include Parametric::DSL
schema do
field(:name).type(:string).required
field(:email).policy(:email).required
field(:age).type(:integer)
end
attr_reader :params, :errors
def initialize(input_data)
results = self.class.schema.resolve(input_data)
@params = results.output
@errors = results.errors
end
def run!
if !valid?
raise InvalidFormError.new(errors)
end
run
end
def valid?
!errors.any?
end
private
def run
User.create!(params)
end
endForm schemas can also be defined by passing another form or schema instance. This can be useful when building form classes in runtime.
UserSchema = Parametric::Schema.new do
field(:name).type(:string).present
field(:age).type(:integer)
end
class CreateUserForm
include Parametric::DSL
# copy from UserSchema
schema UserSchema
endSub classes of classes using the DSL will inherit schemas defined on the parent class.
class UpdateUserForm < CreateUserForm
# All field definitions in the parent are conserved.
# New fields can be defined
# or existing fields overriden
schema do
# make this field optional
field(:name).declared.present
end
def initialize(user, input_data)
super input_data
@user = user
end
private
def run
@user.update params
end
endSometimes it's useful to apply the same policy to all fields in a schema.
For example, fields that are required when creating a record might be optional when updating the same record (ie. PATCH operations in APIs).
class UpdateUserForm < CreateUserForm
schema.policy(:declared)
endThis will prefix the :declared policy to all fields inherited from the parent class.
This means that only fields whose keys are present in the input will be validated.
Schemas with default policies can still define or re-define fields.
class UpdateUserForm < CreateUserForm
schema.policy(:declared) do
# Validation will only run if key exists
field(:age).type(:integer).present
end
endSometimes you'll want a child class to inherit most fields from the parent, but ignoring some.
class CreateUserForm
include Parametric::DSL
schema do
field(:uuid).present
field(:status).required.options(["inactive", "active"])
field(:name)
end
endThe child class can use ignore(*fields) to ignore fields defined in the parent.
class UpdateUserForm < CreateUserForm
schema.ignore(:uuid, :status) do
# optionally add new fields here
end
endAnother way of modifying inherited schemas is by passing options.
class CreateUserForm
include Parametric::DSL
schema(default_policy: :noop) do |opts|
field(:name).policy(opts[:default_policy]).type(:string).required
field(:email).policy(opts[:default_policy).policy(:email).required
field(:age).type(:integer)
end
# etc
endThe :noop policy does nothing. The sub-class can pass its own default_policy.
class UpdateUserForm < CreateUserForm
# this will only run validations keys existing in the input
schema(default_policy: :declared)
endYou can use a combination of #clone and #policy to change schema-wide field policies on the fly.
For example, you might have a form object that supports creating a new user and defining mandatory fields.
class CreateUserForm
include Parametric::DSL
schema do
field(:name).present
field(:age).present
end
attr_reader :errors, :params
def initialize(payload: {})
results = self.class.schema.resolve(payload)
@errors = results.errors
@params = results.output
end
def run!
User.create(params)
end
endNow you might want to use the same form object to update and existing user supporting partial updates.
In this case, however, attributes should only be validated if the attributes exist in the payload. We need to apply the :declared policy to all schema fields, only if a user exists.
We can do this by producing a clone of the class-level schema and applying any necessary policies on the fly.
class CreateUserForm
include Parametric::DSL
schema do
field(:name).present
field(:age).present
end
attr_reader :errors, :params
def initialize(payload: {}, user: nil)
@payload = payload
@user = user
# pick a policy based on user
policy = user ? :declared : :noop
# clone original schema and apply policy
schema = self.class.schema.clone.policy(policy)
# resolve params
results = schema.resolve(params)
@errors = results.errors
@params = results.output
end
def run!
if @user
@user.update_attributes(params)
else
User.create(params)
end
end
endForm objects can optionally define more than one schema by giving them names:
class UpdateUserForm
include Parametric::DSL
# a schema named :query
# for example for query parameters
schema(:query) do
field(:user_id).type(:integer).present
end
# a schema for PUT body parameters
schema(:payload) do
field(:name).present
field(:age).present
end
endNamed schemas are inherited and can be extended and given options in the same way as the nameless version.
Named schemas can be retrieved by name, ie. UpdateUserForm.schema(:query).
If no name given, .schema uses :schema as default schema name.
Sometimes you don't know the exact field names but you want to allow arbitrary fields depending on a given pattern.
# with this payload:
# {
# title: "A title",
# :"custom_attr_Color" => "red",
# :"custom_attr_Material" => "leather"
# }
schema = Parametric::Schema.new do
field(:title).type(:string).present
# here we allow any field starting with /^custom_attr/
# this yields a MatchData object to the block
# where you can define a Field and validations on the fly
# https://ruby-doc.org/core-2.2.0/MatchData.html
expand(/^custom_attr_(.+)/) do |match|
field(match[1]).type(:string).present
end
end
results = schema.resolve({
title: "A title",
:"custom_attr_Color" => "red",
:"custom_attr_Material" => "leather",
:"custom_attr_Weight" => "",
})
results.ouput[:Color] # => "red"
results.ouput[:Material] # => "leather"
results.errors["$.Weight"] # => ["is required and value must be present"]NOTES: dynamically expanded field names are not included in Schema#structure metadata, and they are only processes if fields with the given expressions are present in the payload. This means that validations applied to those fields only run if keys are present in the first place.
Schema#before_resolve can be used to register blocks to modify the entire input payload before individual fields are validated and coerced.
This can be useful when you need to pre-populate fields relative to other fields' values, or fetch extra data from other sources.
# This example computes the value of the :slug field based on :name
schema = Parametric::Schema.new do
# Note1: These blocks run before field validations, so :name might be blank or invalid at this point.
# Note2: Before hooks _must_ return a payload hash.
before_resolve do |payload, context|
payload.merge(
slug: payload[:name].to_s.downcase.gsub(/\s+/, '-')
)
end
# You still need to define the fields you want
field(:name).type(:string).present
field(:slug).type(:string).present
end
result = schema.resolve( name: 'Joe Bloggs' )
result.output # => { name: 'Joe Bloggs', slug: 'joe-bloggs' }Before hooks can be added to nested schemas, too:
schema = Parametric::Schema.new do
field(:friends).type(:array).schema do
before_resolve do |friend_payload, context|
friend_payload.merge(title: "Mr/Ms #{friend_payload[:name]}")
end
field(:name).type(:string)
field(:title).type(:string)
end
endYou can use inline blocks, but anything that responds to #call(payload, context) will work, too:
class SlugMaker
def initialize(slug_field, from:)
@slug_field, @from = slug_field, from
end
def call(payload, context)
payload.merge(
@slug_field => payload[@from].to_s.downcase.gsub(/\s+/, '-')
)
end
end
schema = Parametric::Schema.new do
before_resolve SlugMaker.new(:slug, from: :name)
field(:name).type(:string)
field(:slug).type(:slug)
endThe context argument can be used to add custom validation errors in a before hook block.
schema = Parametric::Schema.new do
before_resolve do |payload, context|
# validate that there's no duplicate friend names
friends = payload[:friends] || []
if friends.any? && friends.map{ |fr| fr[:name] }.uniq.size < friends.size
context.add_error 'friend names must be unique'
end
# don't forget to return the payload
payload
end
field(:friends).type(:array).schema do
field(:name).type(:string)
end
end
result = schema.resolve(
friends: [
{name: 'Joe Bloggs'},
{name: 'Joan Bloggs'},
{name: 'Joe Bloggs'}
]
)
result.valid? # => false
result.errors # => {'$' => ['friend names must be unique']}In most cases you should be validating individual fields using field policies. Only validate in before hooks in cases you have dependencies between fields.
Schema#after_resolve takes the sanitized input hash, and can be used to further validate fields that depend on eachother.
schema = Parametric::Schema.new do
after_resolve do |payload, ctx|
# Add a top level error using an arbitrary key name
ctx.add_base_error('deposit', 'cannot be greater than house price') if payload[:deposit] > payload[:house_price]
# Or add an error keyed after the current position in the schema
# ctx.add_error('some error') if some_condition
# after_resolve hooks must also return the payload, or a modified copy of it
# note that any changes added here won't be validated.
payload.merge(desc: 'hello')
end
field(:deposit).policy(:integer).present
field(:house_price).policy(:integer).present
field(:desc).policy(:string)
end
result = schema.resolve({ deposit: 1100, house_price: 1000 })
result.valid? # false
result.errors[:deposit] # ['cannot be greater than house price']
result.output[:deposit] # 1100
result.output[:house_price] # 1000
result.output[:desc] # 'hello'Structs turn schema definitions into objects graphs with attribute readers.
Add optional Parametrict::Struct module to define struct-like objects with schema definitions.
require 'parametric/struct'
class User
include Parametric::Struct
schema do
field(:name).type(:string).present
field(:friends).type(:array).schema do
field(:name).type(:string).present
field(:age).type(:integer)
end
end
endUser objects can be instantiated with hash data, which will be coerced and validated as per the schema definition.
user = User.new(
name: 'Joe',
friends: [
{name: 'Jane', age: 40},
{name: 'John', age: 30},
]
)
# properties
user.name # => 'Joe'
user.friends.first.name # => 'Jane'
user.friends.last.age # => 30Both the top-level and nested instances contain error information:
user = User.new(
name: '', # invalid
friends: [
# friend name also invalid
{name: '', age: 40},
]
)
user.valid? # false
user.errors['$.name'] # => "is required and must be present"
user.errors['$.friends[0].name'] # => "is required and must be present"
# also access error in nested instances directly
user.friends.first.valid? # false
user.friends.first.errors['$.name'] # "is required and must be valid"Instantiating structs with .new!(hash) will raise a Parametric::InvalidStructError exception if the data is validations fail. It will return the struct instance otherwise.
Parametric::InvalidStructError includes an #errors property to inspect the errors raised.
begin
user = User.new!(name: '')
rescue Parametric::InvalidStructError => e
e.errors['$.name'] # "is required and must be present"
endYou can also pass separate struct classes in a nested schema definition.
class Friend
include Parametric::Struct
schema do
field(:name).type(:string).present
field(:age).type(:integer)
end
end
class User
include Parametric::Struct
schema do
field(:name).type(:string).present
# here we use the Friend class
field(:friends).type(:array).schema Friend
end
endStruct subclasses can add to inherited schemas, or override fields defined in the parent.
class AdminUser < User
# inherits User schema, and can add stuff to its own schema
schema do
field(:permissions).type(:array)
end
endStruct#to_h returns the ouput hash, with values coerced and any defaults populated.
class User
include Parametrict::Struct
schema do
field(:name).type(:string)
field(:age).type(:integer).default(30)
end
end
user = User.new(name: "Joe")
user.to_h # {name: "Joe", age: 30}Parametric::Struct implements #==() to compare two structs Hash representation (same as struct1.to_h.eql?(struct2.to_h).
Users can override #==() in their own classes to do whatever they need.
Add this line to your application's Gemfile:
gem 'parametric'
And then execute:
$ bundle
Or install it yourself as:
$ gem install parametric
- Fork it ( http://github.com/ismasan/parametric/fork )
- Create your feature branch (
git checkout -b my-new-feature) - Commit your changes (
git commit -am 'Add some feature') - Push to the branch (
git push origin my-new-feature) - Create new Pull Request

