Releases: intelligentnode/Intelli
Releases · intelligentnode/Intelli
intelli v1.4.1
New Features 🌟
- Vibe Flow (Beta): Build and execute multi-modal AI flows from natural language descriptions.
- LoopTask: Iterate steps (refine → critique → improve) without introducing cycles in the main DAG.
- Web Search Support: Search Agent now supports Google Custom Search alongside Intellicloud semantic search.
- CustomAgent: Base class to plug in proprietary logic or local models into any Flow.
Code Example
Describe your workflow in plain English and let VibeFlow build it:
from intelli.flow.vibe import VibeFlow
import asyncio
async def run_vibe():
vf = VibeFlow(
planner_provider="openai",
planner_api_key="YOUR_KEY",
text_model="openai gpt-5.2"
)
flow = await vf.build("Summarize the input text and then translate the summary into French.")
results = await flow.start(initial_input="IntelliNode is an open-source library...")
print(results)
asyncio.run(run_vibe())More docs:
- Vibe Agents: https://docs.intellinode.ai/docs/python/vibe-agents
- Search Agent: https://docs.intellinode.ai/docs/python/flows/search-agent
Contributors
intelli v1.3.4
New Features 🌟
- OpenAI: Added tools/tool_choice support while keeping legacy.
- OpenAI: Default model switched to gpt-5.2.
- Gemini: Added structured outputs helper (JSON schema).
- Gemini: Added streaming support (streamGenerateContent) and updated TTS request format.
- MCP: Added async APIs.
- Speechmatics: Return per-token confidence scores and added support for partial transcripts.
Contributors
intelli v1.3.0
New Features 🌟
- Add real-time streaming transcription via WebSocket.
- Integration with RemoteRecognitionModel for unified API.
Technical Details 💻
Installation:
pip install 'intelli[speech]'
Import:
import os
from intelli.controller.remote_recognition_model import (
RemoteRecognitionModel,
SupportedRecognitionModels
)
from intelli.model.input.text_recognition_input import SpeechRecognitionInputCode:
# Works with: OPENAI, KERAS, ELEVENLABS, SPEECHMATICS
recognizer = RemoteRecognitionModel(
key_value=os.environ.get('SPEECHMATICS_API_KEY'),
provider=SupportedRecognitionModels['SPEECHMATICS']
)
# Create input
recognition_input = SpeechRecognitionInput(
audio_file_path="audio.mp3",
language="en"
)
# Get transcription
result = recognizer.recognize_speech(recognition_input)
print(result)Contributor: @nabeel-bassam
intelli v1.2.2
New Features 🌟
- Add support to GTP5, now the openai provider use GPT5 by default.
- Add sample to build flows using latest models.
- Minor bug fixes and enhancement.
intelli v1.1.0
New Features 🌟
- Model Context Protocol (MCP): Connect your own code functions directly to Intelli flows with minimal setup.
- Improved flow graph visual.
Using MCP in Your Flows
# Create an MCP agent for a math tool
mcp_agent = Agent(
agent_type=AgentTypes.MCP.value,
provider="mcp",
mission="Do simple math",
model_params={
"command": sys.executable,
"args": ["mcp_math_server.py"], # Path to your MCP server
"tool": "add", # Tool function to call
"arg_a": 7, # First argument for add function
"arg_b": 8, # Second argument for add function
}
)
# Create a single task flow
flow = Flow(
tasks={"calc": Task(TextTaskInput("Calculate"), mcp_agent)},
map_paths={"calc": []} # Empty list means no outgoing connections
)
result = asyncio.run(flow.start())For complete documentation and details of remote connectors, check the MCP Getting Started Guide.
Contributors
@Barqawiz and @hydrogeohc
Intelli 0.5.7
New Features 🌟
- Offline Llama CPP Integration: run LLMs locally using llama.cpp through unified chatbot or flow interface.
- Multiple Model Support: switch between different GGUF models such as TinyLlama and DeepSeek-R1.
- Enhanced Prompt Formatting: support for model-specific prompt formats.
- Added options to suppress verbose llama.cpp logs.
Using Llama CPP Chat Features 💻
from intelli.function.chatbot import Chatbot, ChatProvider
from intelli.model.input.chatbot_input import ChatModelInput
# Configure tinyLlama Chatbot
options = {
"model_path": "./models/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
"model_params": {
"n_ctx": 512,
"embedding": False, # True if you need embeddings
"verbose": False # Suppress llama.cpp internal logs
}
}
llama_bot = Chatbot(provider=ChatProvider.LLAMACPP, options=options)
# Prepare a chat input and get a response
chat_input = ChatModelInput("You are a helpful assistant.", model="llamacpp", max_tokens=64, temperature=0.7)
chat_input.add_user_message("What is the capital of France?")
response = llama_bot.chat(chat_input)For more details check the llama.cpp docs.
Intelli 0.5.3
New Features 🌟
- Support NVIDIA hosted models (Deepseek and Llama 3.3) via a unified chatbot interface.
- Add streaming responses when calling NVIDIA models.
- Add new embedding provider.
Using NVIDIA Chat Features 💻
from intelli.function.chatbot import Chatbot, ChatProvider
from intelli.model.input.chatbot_input import ChatModelInput
# get your API key from https://build.nvidia.com/
nvidia_bot = Chatbot("YOUR_NVIDIA_KEY", ChatProvider.NVIDIA.value)
# prepare the input
input_obj = ChatModelInput("You are a helpful assistant.", model="deepseek-ai/deepseek-r1", max_tokens=1024, temperature=0.6)
input_obj.add_user_message("What do you think is the secret to balanced life?")Synchronous response example
response = nvidia_bot.chat(input_obj)Streaming response example
async def stream_nvidia():
for i, chunk in enumerate(nvidia_bot.stream(input_obj)):
print(chunk, end="") # Print each chunk as it arrives
if i >= 4: # Print only the first 5 chunks
break
# In an async context, you can run:
result = await stream_nvidia()For more details, check the docs.
Intelli 0.5.1
Offline Whisper Transcription 🎤
Load and use OpenAI's Whisper model offline for audio transcription.
Intellinode module support initial prompt to improve the transcription quality.
Code
Load audio
import soundfile as sf
audio_data, sample_rate = sf.read(file_name)Inference:
from intelli.wrappers.keras_wrapper import KerasWrapper
wrapper = KerasWrapper(model_name="whisper_large_multi_v2")
result = wrapper.transcript(audio_data, user_prompt="medical content")check the documentation.
Intelli 0.4.2
New Features 🌟
- Update the agent to support the Llama 3.1 offline model.
- Add offline model capability to the chatbot.
- Unify Keras loader under a dedicated wrapper
KerasWrapper.
Using the New Features 💻
Intelli v0.2.3
New Features 🌟
- Support for ANTHROPIC Models: Our chatbot integration now supports advanced ANTHROPIC models, including those with large context windows.
- Chatbot Provider Enumeration: The selection of AI providers has been simplified through the use of enumerators.
- Minor Bug Fixes: Adjust the parameter order for the controllers.
Using the New Features 💻
ChatProviderenum simplifies the selecting providers.
from intelli.function.chatbot import ChatProvider
# check available chatbot providers
for provider in ChatProvider:
print(provider.name)- Check the chatbot documentation to use claude-3 model.