This project implements a simple web application for sentiment analysis using a machine learning model trained on IMDb movie reviews dataset. Users can input text, and the application predicts whether the sentiment of the text is positive or negative..
- Input text area for users to enter text for sentiment analysis.
- Analyze Sentiment button triggers the sentiment analysis process.
- Display of predicted sentiment result.
- Backend: Python (Flask)
- Frontend: HTML, CSS, JavaScript
- Machine Learning Model: Logistic Regression (scikit-learn)
- Text Preprocessing: NLTK (Natural Language Toolkit)
- Serialization: Pickle
-
Clone the repository:
git clone https://github.com/your_username/sentiment-analysis-website.git
-
Install dependencies:
pip install -r requirements.txt
-
Train the machine learning model and save it as a pickle file:
python train_model.py
-
Run the Flask server:
python sentiment_analysis_backend.py
sentiment-analysis-website/
│
├── sentiment_analysis_backend.py # Flask backend for sentiment analysis
├── sentiment_model.py # Pre-trained machine learning model
├── index.html # HTML file for frontend
├── imdb_reviews.csv # IMDb movie reviews dataset
└── README.md # Project README file
This project is licensed under the MIT License. See the LICENSE file for details.
- IMDb for providing the movie reviews dataset.
- OpenAI for providing guidance on machine learning techniques.
- Flask, NLTK, scikit-learn, and other open-source libraries used in this project.


