Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions R/CBA.R
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
#' of form \code{class ~ .} or \code{class ~ predictor1 + predictor2}.
#' @param data A data.frame or a transaction set containing the training data.
#' Data frames are automatically discretized and converted to transactions.
#' @param pruning Pruning strategy used: "M1" or "M2".
#' @param pruning Pruning strategy used: "M1" or "M2". NULL to skip pruning step.
#' @param parameter,control Optional parameter and control lists for apriori.
#' @param balanceSupport balanceSupport parameter passed to
#' \code{\link{mineCARs}} function.
Expand Down Expand Up @@ -79,8 +79,10 @@ CBA <- function(formula, data, pruning = "M1",
verbose = verbose, ...)

if(verbose) cat("\nPruning CARs...\n")
if(pruning == "M1") rulebase <- pruneCBA_M1(formula, rulebase, trans)
else rulebase <- pruneCBA_M2(formula, rulebase, trans)
if(!is.null(pruning)) {
if(pruning == "M1") rulebase <- pruneCBA_M1(formula, rulebase, trans)
else rulebase <- pruneCBA_M2(formula, rulebase, trans)
}

if(verbose) cat("CARs left:", length(rulebase), "\n")

Expand Down
2 changes: 1 addition & 1 deletion man/CBA.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

25 changes: 20 additions & 5 deletions tests/testthat/test-CBA.R
Original file line number Diff line number Diff line change
@@ -1,15 +1,30 @@
library("testthat")
library("arulesCBA")
data("iris")

context("CBA")

cba_classifier <- CBA(Species ~ ., iris, supp = 0.05, conf = 0.9, pruning = "M1")
data("iris")
formula <- Species ~ .

trans <- prepareTransactions(formula, iris, disc.method = "mdlp")
rulebase <- mineCARs(
formula = Species ~ .,
transactions = trans,
supp = 0.05,
conf = 0.9
)
n_rules <- length(rulebase)

cba_no_pruning <- CBA(formula, iris, supp = 0.05, conf = 0.9, pruning = NULL)
expect_equal(length(rules(cba_no_pruning)), n_rules)

cba_classifier <- CBA(formula, iris, supp = 0.05, conf = 0.9, pruning = "M1")
expect_equal(length(rules(cba_classifier)), 8L)

results <- predict(cba_classifier, iris)
expect_equal(results[1], factor("setosa",
levels = c("setosa", "versicolor", "virginica")))
expect_equal(
results[1], factor("setosa", levels = c("setosa", "versicolor", "virginica"))
)

results <- predict(cba_classifier, head(iris, n = 5))
expect_equal(length(results), 5L)
Expand All @@ -25,7 +40,7 @@ results <- predict(cba_classifier, head(iris, n = 5))
expect_equal(length(results), 5L)

# FIXME: We need to check what the output of M2 should be
cba_classifier_M2 <- CBA(Species ~ ., iris, supp = 0.05, conf = 0.9, pruning = "M2")
cba_classifier_M2 <- CBA(formula, iris, supp = 0.05, conf = 0.9, pruning = "M2")
# FIXME: there is a bug in totalError calculation in M2
#expect_equal(length(rules(cba_classifier_M2)), 8L)