- ๐ง Build System โ Set up Makefile or CMake
- ๐งฑ Data Structures โ Define
Matrix,Layer,Network - โ Matrix Operations โ Add, multiply, transpose
- ๐ Activation Functions โ Sigmoid, ReLU, Softmax
- ๐ Forward Propagation โ Weighted sums + activations
- ๐ Loss Function โ MSE or Cross-Entropy
- ๐งฎ Backpropagation โ Calculate gradients
- ๐๏ธ Weight Updates โ Apply SGD
- ๐ Training Loop โ Run for N epochs
- โ
Test Cases (CPU)
- Matrix operations match expected results
- Activation outputs correct for sample inputs
- Forward propagation output sanity check
- Backpropagation gradients validated numerically
- Training on XOR dataset: loss decreases, correct outputs
- โ๏ธ CUDA Setup โ Configure build and test kernel
- ๐ง Matrix Ops (GPU) โ Port add, multiply, etc.
- ๐ Activations (GPU) โ Parallel element-wise ops
- ๐งฌ Forward Prop (GPU) โ Matrix ops + activations
- ๐ Backprop (GPU) โ Gradient calculation on GPU
- ๐ Training Loop (GPU) โ Fully GPU-accelerated
- ๐ Test Cases (GPU)
- GPU matrix ops produce identical results to CPU
- Activation functions match CPU outputs
- Forward propagation matches CPU outputs
- Backpropagation gradients match CPU calculations
- Training on XOR dataset converges with GPU