Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions html/06_Induction.html
Original file line number Diff line number Diff line change
Expand Up @@ -1922,7 +1922,7 @@ <h3><span class="section-number">6.5.4. </span>Exercises<a class="headerlink" hr
<p class="admonition-title">Proof</p>
<p>We prove this by strong induction relative to the expression <span class="math notranslate nohighlight">\(2n - d\)</span>. Suppose that for all
integers <span class="math notranslate nohighlight">\(m\)</span> and <span class="math notranslate nohighlight">\(c\)</span> with <span class="math notranslate nohighlight">\(|2m - c|&lt;|2n-d|\)</span>, it is true that
<span class="math notranslate nohighlight">\(\operatorname{mod}(n, d) + d \cdot \operatorname{div}(n, d) = n\)</span>.</p>
<span class="math notranslate nohighlight">\(\operatorname{mod}(m, c) + c \cdot \operatorname{div}(m, c) = m\)</span>.</p>
<p><strong>Case 1</strong> (<span class="math notranslate nohighlight">\(nd&lt;0\)</span>): Then by the inductive hypothesis</p>
<div class="math notranslate nohighlight">
\[\operatorname{mod}(n+d, d) + d \cdot \operatorname{div}(n+d, d) = n+d,\]</div>
Expand Down Expand Up @@ -2830,4 +2830,4 @@ <h3><span class="section-number">6.7.7. </span>Exercises<a class="headerlink" hr
</script>

</body>
</html>
</html>