This is a real-time solver framework. We implement algorithms such as LSSLRTA*, Nancy, Data-Driven Nancy.
[1] Maximilian Fickert, Tianyi Gu, Leonhard Staut, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search. Proceedings of the Thirty-fourth AAAI Conference on Artificial Intelligence (AAAI-20), 2020.
[2] Maximilian Fickert, Tianyi Gu, Leonhard Staut, Sai Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, Real-time Planning as Data-driven Decision-making. Proceedings of the ICAPS Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL-20), 2020.
[pdf] [talk] [slides] [poster]
make
Usage:
./realtimeSolver [OPTION...] < [input file]
-d, --domain arg domain type: randomtree, tile, pancake, racetrack
(default: racetrack)
-s, --subdomain arg puzzle type: uniform, inverse, heavy, sqrt;
pancake type: regular, heavy;racetrack map :
barto-bigger, hanse-bigger-double, uniform (default:
barto-bigger)
-a, --alg arg realtime algorithm: bfs, astar, fhat,
lsslrtastar, risk, riskdd, riskddSquish (default: risk)
-l, --lookahead arg expansion limit (default: 100)
-o, --performenceOut arg performence Out file (default: out.txt)
-v, --pathOut arg path Out file
-h, --help Print usagecd scipts/testHarnesses./multiThread-realtimeSolver.sh
[-f instance] default: 1
[-n # of instances to test] default: 100
[-d domain] default: pancake
[-s subdomain] default: regular
[-z domain size] default: 16
[-a algorithm ]
support list,eg: -a a1 -a a2 default: risk, riskddSquish, lsslrtastar
[-l lookahead, ]
support list,eg: -l 10 -l 30 default: 3, 10, 30, 100, 300, 1000
[-e algorithm extention default: null]
[-t thread number] default: 1
[-h help]Source code of offline training is avaiable here
All the instances can be found here