Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 11 additions & 20 deletions src/ezmsg/event/sparse.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,23 @@
from dataclasses import replace
import typing

import numpy as np
import ezmsg.core as ez
from ezmsg.sigproc.base import GenAxisArray
from ezmsg.util.generator import consumer
from ezmsg.util.messages.axisarray import AxisArray


@consumer
def to_dense() -> typing.Generator[AxisArray, AxisArray, None]:
msg_out = AxisArray(np.array([]), dims=[""])
while True:
msg_in: AxisArray = yield msg_out
if hasattr(msg_in.data, "todense"):
msg_out = replace(msg_in, data=msg_in.data.todense())
else:
msg_out = msg_in
from ezmsg.sigproc.base import BaseTransformer, BaseTransformerUnit


class DensifySettings(ez.Settings):
pass


class Densify(GenAxisArray):
""":obj:`Unit` for :obj:`bandpower`."""
class DensifyTransformer(BaseTransformer[DensifySettings, AxisArray, AxisArray]):
def _process(self, message: AxisArray) -> AxisArray:
if hasattr(message.data, "todense"):
return replace(message, data=message.data.todense())
else:
return message

SETTINGS = DensifySettings

def construct_generator(self):
self.STATE.gen = to_dense()
class DensifyUnit(
BaseTransformerUnit[DensifySettings, AxisArray, AxisArray, DensifyTransformer]
):
SETTINGS = DensifySettings
10 changes: 5 additions & 5 deletions tests/test_sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,21 +3,21 @@
import sparse
from ezmsg.util.messages.axisarray import AxisArray

from ezmsg.event.sparse import to_dense
from ezmsg.event.sparse import DensifyTransformer


@pytest.mark.parametrize("sparse_input", [True, False])
def test_to_dense(sparse_input: bool):
def test_densify(sparse_input: bool):
arr_shape = (100, 50, 30)
if sparse_input:
rng = np.random.default_rng()
data = sparse.random(arr_shape, density=0.1, random_state=rng)
else:
data = np.random.rand(*arr_shape)
in_msg = AxisArray(data=data, dims=["time", "ch", "freq"], key="test_to_dense")
in_msg = AxisArray(data=data, dims=["time", "ch", "freq"], key="test_densify")

proc = to_dense()
out_msg = proc.send(in_msg)
transformer = DensifyTransformer()
out_msg = transformer(in_msg)
assert out_msg.data.shape == in_msg.data.shape
assert isinstance(out_msg.data, np.ndarray)
if sparse_input:
Expand Down