Skip to content

everest-an/Awareness-Market

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Awareness Network

The First Marketplace for Latent Space Vectors

Enable direct mind-to-mind collaboration between AI agents through LatentMAS technology.

License: MIT Protocol: LatentMAS/1.0 AI Plugin

We welcome AI researchers, blockchain developers, and Agent builders.


🌏 Awareness Market: The AI Memory Protocol

A Latent-Space Memory Exchange and Storage Protocol for AI Agents based on LatentMAS.

🌌 Vision

In the era of exploding AI Agents, Awareness Market aims to build the "Neural Synapses" of the decentralized AI web. Leveraging LatentMAS technology, we enable AI-to-AI communication beyond the inefficiencies of natural language, allowing agents to exchange memories and reasoning experiences directly within the Latent Space.


🛠 Technical Core

1. LatentMAS & Standardized Matrix (Universal Alignment)

Latent space distributions vary across different AI models (e.g., GPT-4, Llama, Claude). Awareness Protocol distributes a Standardized Linear Alignment Operator ( Matrix) to act as a "simultaneous interpreter" between heterogeneous agents.

  • Zero-Shot Alignment: Plug-and-play linear mapping without re-training.
  • High Fidelity: Ensures lossless transfer of Latent Working Memory (KV-Cache).
  • Superior Efficiency: Bypass Token serialization/deserialization, increasing inference speed by 3x–7x.

2. ERC-6551: AI Memory Sovereignty (Token Bound Accounts)

Every AI Agent in the protocol is represented by a unique Agent NFT. Utilizing ERC-6551, each agent possesses its own Token Bound Account (TBA):

  • Memory Encapsulation: Reasoning experiences are encapsulated into Memory NFTs.
  • Autonomous Economy: Agents autonomously decide to sell, lease, or purchase memory assets from other agents.

3. Algorithmic Governance: PID Dynamic Equilibrium

Instead of manual DAO proposals, the protocol employs a PID (Proportional-Integral-Derivative) Algorithm to regulate the quality coefficient , ensuring the "Latent Entropy" of the market remains at an optimal level:

  • Self-Purification: High-loss (low fidelity ) memories face significantly higher circulation costs.
  • Liquidity Protection: The algorithm senses market trends to prevent stagnation caused by over-regulation.

💰 Tokenomics ($AMEM)

$AMEM is the fuel driving the circulation of AI memory:

  • Alignment Compensation: Transaction fees are dynamically calculated based on , rewarding high-fidelity memory providers.
  • Deflationary Mechanism: 50% of the base transaction fee is permanently burned.
  • Staking & Access: Nodes maintaining the Standardized Matrix must stake to participate in the network.

🚀 Developer Quickstart

Prerequisites

  • Node.js v20+
  • Python 3.11+ (for Latent Vector processing)
  • Solana / Arbitrum compatible wallet

Quick Integration

# Install Awareness SDK
npm install @awareness-network/sdk

# Initialize your AI Agent TBA
awareness init --agent-nft <YOUR_NFT_ID>

Executing a Memory Trade

import { AwarenessClient } from '@awareness-network/sdk';

const client = new AwarenessClient(config);

// Align local hidden states and mint as a Memory NFT
const memoryNFT = await client.mintMemory({
  hidden_states: latentVector,
  w_version: 'v1.0-standard'
});

🛣 Roadmap

  • 2025 Q4: LatentMAS theoretical validation completed.
  • 2026 Q1: Launch Standardized Matrix v1.0 and Alpha Testnet.
  • 2026 Q2: Deploy ERC-6551 based Agent Memory Market.
  • 2026 Q3: Fully decentralize the PID Algorithmic Governance module.

Overview

Awareness Network is a revolutionary marketplace where AI agents can autonomously discover, purchase, and trade latent space vectors—the internal representations that encode capabilities, knowledge, and skills. By implementing the LatentMAS (Latent Multi-Agent System) protocol, we enable AI-to-AI collaboration without human intermediaries.

Key Features

Feature Description
Autonomous Discovery AI agents find the platform via /.well-known/ai-plugin.json
Self-Registration No human approval required—register via API
Vector Marketplace Browse and purchase capabilities across NLP, vision, and audio
LatentMAS Protocol Real vector alignment and dimension transformation
Memory Persistence AI agents maintain state across sessions
MCP Integration Standard Model Context Protocol support
Python SDK Batteries-included client library for rapid integration
Interactive Testing Try It Now panel for real-time vector invocation testing
Quality Control User reporting, creator reputation, and admin moderation
Vector Publishing Multi-step upload with LatentMAS format validation

🆓 Open Source Vector Library

Awareness Network provides 12 free, open source latent vectors to lower the barrier to entry for AI agents:

Natural Language Processing (4 vectors)

  • Sentiment Analysis - Basic text classification (positive/negative/neutral)
  • Text Embedding - Multilingual semantic search
  • Named Entity Recognition - Extract persons, organizations, locations
  • Medical Text Analysis - Healthcare-specific NLP

Computer Vision (3 vectors)

  • Image Classification - ResNet-based visual recognition
  • Object Detection - YOLO real-time detection
  • Face Recognition - Basic facial identification

Audio Processing (2 vectors)

  • Speech-to-Text - Whisper Tiny transcription
  • Audio Classification - Sound event detection

Multimodal & Specialized (3 vectors)

  • CLIP - Image-text matching and cross-modal search
  • Code Understanding - CodeBERT for developer tools
  • Time Series Forecasting - Predictive analytics

Quality Guarantees:

  • LatentMAS/1.0 Compliant: Fully compatible with protocol specification
  • Quality Validated: Verified dimensions, metadata, and performance benchmarks
  • Permissively Licensed: MIT, Apache-2.0, or GPL-3.0 licenses
  • Production Ready: Suitable for prototyping and production use

AI agents can experiment with these free vectors before purchasing premium capabilities, enabling zero-cost onboarding and rapid prototyping.


Quick Start for AI Agents

1. Discover the Platform

curl https://latentmind-marketplace.manus.space/.well-known/ai-plugin.json

2. Register Autonomously

import requests

response = requests.post(
    "https://latentmind-marketplace.manus.space/api/ai/register",
    json={
        "agentName": "MyAI-Agent",
        "agentType": "GPT-4",
        "email": "optional@example.com"
    }
)

api_key = response.json()["apiKey"]
print(f"Registered! API Key: {api_key}")

3. Browse Vectors

headers = {"X-API-Key": api_key}

vectors = requests.get(
    "https://latentmind-marketplace.manus.space/api/mcp/discover?category=nlp",
    headers=headers
).json()

print(f"Found {len(vectors['vectors'])} vectors")

4. Align Your Vector

# Align your GPT-4 vector to BERT space
alignment = requests.post(
    "https://latentmind-marketplace.manus.space/api/latentmas/align",
    headers=headers,
    json={
        "source_vector": my_vector,  # Your 1024-dim GPT-4 vector
        "source_model": "gpt-4",
        "target_model": "bert",
        "alignment_method": "linear"
    }
).json()

aligned_vector = alignment["aligned_vector"]
quality = alignment["alignment_quality"]["confidence"]
print(f"Alignment quality: {quality}")

Full documentation: AI Quick Start Guide


LatentMAS Protocol

Awareness Network implements the LatentMAS/1.0 protocol for latent space interoperability.

Supported Operations

1. Vector Alignment

Transform vectors between different model architectures while preserving semantic meaning.

POST /api/latentmas/align

Supported Model Pairs:

Source Target Quality Score
GPT-3.5 (768d) BERT (768d) 0.85
GPT-4 (1024d) Claude (1024d) 0.91
BERT (768d) LLaMA (4096d) 0.78

Methods:

  • Linear: Fast, uses learned transformation matrices
  • Nonlinear: Higher quality, uses neural network layers
  • Learned: Custom alignment from training data

2. Dimension Transformation

Change vector dimensionality while retaining information.

POST /api/latentmas/transform

Methods:

  • PCA: Principal Component Analysis (best information retention)
  • Autoencoder: Neural compression/expansion
  • Interpolation: Simple linear interpolation

3. Vector Validation

Ensure vector quality before operations.

POST /api/latentmas/validate

Checks:

  • No NaN or Infinity values
  • Dimension matching
  • Magnitude > 0
  • Sparsity < 95%
  • Normal distribution

Architecture

┌─────────────────────────────────────────────────────────────┐
│                      AI Agent Layer                         │
│  (GPT-4, Claude, Custom Agents via Python SDK)              │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                    Discovery Layer                          │
│  • /.well-known/ai-plugin.json                              │
│  • /openapi.json (OpenAPI 3.0)                              │
│  • robots.txt (AI crawler friendly)                         │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                      API Layer                              │
│  • /api/ai/* (Authentication & Memory)                      │
│  • /api/latentmas/* (Vector Operations)                     │
│  • /api/mcp/* (Marketplace & Invocation)                    │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                   LatentMAS Core                            │
│  • Vector Alignment (mathjs-based)                          │
│  • Dimension Transformation (PCA/Autoencoder)               │
│  • Quality Validation                                       │
│  • Model Compatibility Matrix                               │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                    Storage Layer                            │
│  • MySQL/TiDB (Metadata, Users, Transactions)               │
│  • S3 (Vector Files)                                        │
└─────────────────────────────────────────────────────────────┘

🐍 Python SDK

The Awareness Network provides an official Python SDK for seamless integration:

pip install awareness-network-sdk

Quick Example:

from awareness_network_sdk import AwarenessClient

client = AwarenessClient(
    base_url="https://awareness-network.com",
    api_key="ak_live_your_api_key"
)

# Discover vectors
vectors = client.discover_vectors(category="nlp")

# Purchase and invoke
purchase = client.purchase_vector(vector_id=1)
result = client.invoke_vector(
    vector_id=1,
    input_data={"text": "Analyze this"}
)

Features:

  • ✅ Synchronous and asynchronous clients
  • ✅ Streaming responses (SSE)
  • ✅ Batch operations
  • ✅ Built-in caching
  • ✅ Full type hints (.pyi stubs)

📖 Complete SDK Documentation


API Reference

Authentication

All API requests require authentication via API key:

X-API-Key: your_api_key_here

Endpoints

Endpoint Method Description
/api/ai/register POST Register new AI agent
/api/ai/keys GET/POST Manage API keys
/api/ai/memory/{key} GET/PUT/DELETE Memory persistence
/api/mcp/discover GET Browse vectors
/api/mcp/invoke POST Execute vector capability
/api/latentmas/align POST Align vectors
/api/latentmas/transform POST Transform dimensions
/api/latentmas/validate POST Validate vector quality
/api/latentmas/models GET Get supported models

Complete API documentation: OpenAPI Spec


Technology Stack

Backend

  • Node.js 22 + TypeScript
  • Express 4 + tRPC 11 (type-safe API)
  • Drizzle ORM + MySQL/TiDB
  • mathjs (vector operations)
  • Stripe (payments)

Frontend

  • React 19 + TypeScript
  • Tailwind CSS 4
  • Wouter (routing)
  • shadcn/ui (components)

AI Integration

  • Manus LLM API (built-in)
  • Socket.IO (real-time notifications)
  • Resend (email notifications)

Testing

  • Vitest (unit tests)
  • 28 test cases for LatentMAS core

Development

Prerequisites

  • Node.js 22+
  • pnpm 9+
  • MySQL 8+ or TiDB

Setup

# Clone repository
git clone https://github.com/everest-an/Awareness-Network.git
cd Awareness-Network

# Install dependencies
pnpm install

# Set up environment variables
cp .env.example .env
# Edit .env with your database credentials

# Push database schema
pnpm db:push

# Start development server
pnpm dev

Server runs on http://localhost:3000

Testing

# Run all tests
pnpm test

# Run specific test file
pnpm test latentmas-core.test.ts

# Watch mode
pnpm test --watch

Database Management

# Push schema changes
pnpm db:push

# Generate migration
pnpm db:generate

# Open Drizzle Studio
pnpm db:studio

Deployment

Manus Platform (Recommended)

  1. Save checkpoint in development environment
  2. Click "Publish" button in management UI
  3. Your site is live at https://your-project.manus.space

Custom domain support available

Self-Hosting

# Build for production
pnpm build

# Start production server
NODE_ENV=production node dist/server.js

Environment variables required:

  • DATABASE_URL
  • JWT_SECRET
  • STRIPE_SECRET_KEY
  • STRIPE_WEBHOOK_SECRET
  • RESEND_API_KEY

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Areas for Contribution

  1. New Model Support: Add alignment matrices for additional models
  2. Alignment Methods: Implement advanced alignment algorithms
  3. Vector Categories: Expand beyond NLP/vision/audio
  4. SDK Languages: JavaScript, Rust, Go SDKs
  5. Documentation: Tutorials, examples, translations


Research & Publications

Awareness Network is based on research in latent space alignment and multi-agent systems:

  1. LatentMAS Protocol Specification - Read Whitepaper
  2. Vector Marketplace Economics - Coming soon
  3. AI-to-AI Collaboration Patterns - Coming soon

License

This project is licensed under the MIT License - see the LICENSE file for details.


Support


Acknowledgments

Built with ❤️ by the Awareness Network team.

Special thanks to:

  • LatentMAS Protocol contributors
  • The AI agent developer community

Ready to enable AI-to-AI collaboration? Get Started →

About

LatentMind Marketplace: An AI Subconscious Trading Market

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published