Skip to content

efekhari27/thesis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

96 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PhD thesis manuscript 🎓

License: GPL v3

General repository of the following PhD thesis in Computer Science:

E. Fekhari. (2024). Uncertainty quantification in muti-physics models for wind turbine asset management. PhD thesis, Université Nice Côte d'Azur.

Repository structure 📁

This repository is divided into two folders:

📂 manuscript: containing the LaTex sources of the manuscript.

📂 numerical_experiments: holding the Python/OpenTURNS code generating some figures from the manuscript.

Related publications 📰

📰 E. Fekhari, B. Iooss, J. Muré, L. Pronzato and M.J. Rendas (2023). "Model predictivity assessment: incremental test-set selection and accuracy evaluation". In: Studies in Theoretical and Applied Statistics, pages 315-347. Springer.

📰 E. Fekhari, V. Chabridon, J. Muré and B. Iooss (2024). "Given-data probabilistic fatigue assessment for offshore wind turbines using Bayesian quadrature". In: Data-Centric Engineering, 5, e5.

📰 E. Vanem, E. Fekhari, N. Dimitrov, M. Kelly, A. Cousin and M. Guiton (2024). "A joint probability distribution for multivariate wind-wave conditions and discussions on uncertainties". In: Journal of Offshore Mechanics and Arctic Engineering; 146(6): 061701.

📰 📣 E. Fekhari, B. Iooss, V. Chabridon and J. Muré (2022). "Efficient techniques for fast uncertainty propagation in an offshore wind turbine multi-physics simulation tool". In: Proceedings of the 5th International Conference on Renewable Energies Offshore (RENEW 2022), Lisbon, Portugal.

📰 📣 E. Fekhari, V. Chabridon, J. Muré and B. Iooss (2023). "Bernstein adaptive nonparametric conditional sampling: a new method for rare event probability estimation". In: Proceedings of the 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP 14), Dublin, Ireland.

📰 A. Lovera, E. Fekhari, B. Jézéquel, M. Dupoiron, M. Guiton and E. Ardillon (2023). "Quantifying and clustering the wake-induced perturbations within a wind farm for load analysis". In: Journal of Physics: Conference Series (WAKE 2023), Visby, Sweden.

📰 E. Vanem, Ø. Lande and E. Fekhari, (2024, to appear). "A simulation study on the usefulness of the Bernstein copula for statistical modeling of metocean variables". In: Proceedings of the ASME 2024 43th International Conference on Ocean, Offshore and Arctic Engineering.

Related communications 📣

📣 E. Fekhari, B. Iooss, V. Chabridon and J. Muré (2022). "Numerical Studies of Bayesian Quadrature Applied to Offshore Wind Turbine Load Estimation". In: SIAM Conference on Uncertainty Quantification (SIAM UQ22), Atlanta, USA.

📣 E. Fekhari, B. Iooss, V. Chabridon and J. Muré (2022). "Model predictivity assessment: incremental test-set selection and accuracy evaluation". In: 22nd Annual Conference of the European Network for Business and Industrial Statistics (ENBIS 2022), Trondheim, Norway.

📣 E. Fekhari, B. Iooss, V. Chabridon and J. Muré (2022). "Kernel-based quadrature applied to offshore wind turbine damage estimation". In: Proceedings of the Mascot-Num 2022 Annual Conference (MASCOT NUM 2022), Clermont-Ferrand, France.

📣 E. Fekhari, B. Iooss, V. Chabridon and J. Muré (2023). "Rare event estimation using nonparametric Bernstein adaptive sampling". In: Proceedings of the Mascot-Num 2023 Annual Conference (MASCOT-NUM 2023), Le Croisic, France.

📣 E. Fekhari, V. Chabridon, J. Muré and B. Iooss (2024). "Sensitivity-Informed Nonparametric Adaptive Conditional Sampling for Robust Reliability Analysis". In: SIAM Conference on Uncertainty Quantification (SIAM UQ24), Trieste, Italy.

📣 Le Printemps de la Recherche 2022, Nantes, France. "Traitement des incertitudes pour la gestion d’actifs éoliens".

📣 Journées Scientifiques de l’Eolien 2024, Saint-Malo, France. "Evaluation probabiliste de la fiabilité en fatigue des structures éoliennes en mer".

Related developments 📊

👉 otkerneldesign: Python package generating designs of experiments based on kernel methods such as kernel herding.

👉 bancs: Python package implementing the "Bernstein Adaptive Nonparametric Conditional Sampling" method for rare event estimation.

👉 copulogram: Python package proposing a synthetic visualization tool for multivariate distributions.

👉 ctbenchmark: Python package presenting a standardized process to benchmark different sampling methods for central tendency estimation


This manuscript is based on the CUED PhD thesis template developed by Krishna Kumar.

About

General repository of my PhD manuscript.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •