The Missing DataFrame Layer for SQL in Python
MOLTRES: Modern Operations Layer for Transformations, Relational Execution, and SQL
Moltres combines a DataFrame API (like Pandas/Polars), SQL pushdown execution (no data loading into memory), and real SQL CRUD operations (INSERT, UPDATE, DELETE) in one unified interface.
Transform millions of rows using familiar DataFrame operations—all executed directly in SQL without materializing data.
- 🚀 PySpark-Style DataFrame API - Primary API with 98% PySpark compatibility
- 🗄️ SQL Pushdown Execution - All operations compile to SQL and run on your database
- ✏️ Real SQL CRUD - INSERT, UPDATE, DELETE with DataFrame-style syntax
- 🐼 Pandas & Polars Interfaces - Optional pandas/polars-style APIs
- ⚡ Async Support - Full async/await support for all operations
- 🔒 Security First - Built-in SQL injection prevention
- 🎯 Framework Integrations - FastAPI, Django, Streamlit, SQLModel, Pydantic
pip install moltres
# Optional extras
pip install moltres[async-postgresql] # Async PostgreSQL
pip install moltres[pandas,polars] # Pandas/Polars result formats
pip install moltres[sqlmodel] # SQLModel/Pydantic integration
pip install moltres[streamlit] # Streamlit integrationfrom moltres import col, connect
from moltres.expressions import functions as F
# Connect to your database
db = connect("sqlite:///example.db")
# DataFrame operations with SQL pushdown (no data loading into memory)
df = (
db.table("orders")
.select()
.join(db.table("customers").select(), on=[col("orders.customer_id") == col("customers.id")])
.where(col("active") == True)
.group_by("country")
.agg(F.sum(col("amount")).alias("total_amount"))
)
# Execute and get results
results = df.collect() # Returns list of dicts by defaultfrom moltres.io.records import Records
# Insert rows
Records.from_list([
{"id": 1, "name": "Alice", "email": "alice@example.com"},
{"id": 2, "name": "Bob", "email": "bob@example.com"},
], database=db).insert_into("users")
# Update rows
db.update("users", where=col("active") == 0, set={"active": 1})
# Delete rows
db.delete("users", where=col("email").is_null())- Getting Started Guide - Step-by-step introduction
- Examples Directory - 29 comprehensive examples
- User Guides - Complete guides for all features
- API Reference - Complete API documentation
- FastAPI Integration - Error handling, dependency injection
- Django Integration - Middleware, template tags, management commands
- Streamlit Integration - Components, caching, query visualization
- SQLModel & Pydantic - Type-safe models
DataFrame Operations: select(), where(), join(), group_by(), agg(), order_by(), limit(), distinct(), pivot(), and more
130+ Functions: Mathematical, string, date/time, aggregate, window, array, JSON, and utility functions
SQL Dialects: SQLite, PostgreSQL, MySQL, DuckDB, and any SQLAlchemy-supported database
UX Features: Enhanced SQL display (show_sql(), sql property), query plan visualization (plan_summary(), visualize_plan()), schema discovery (db.schema(), db.tables()), query validation (validate()), performance hints (performance_hints()), and interactive help (help(), suggest_next())
# Install in development mode
pip install -e ".[dev]"
# Run tests
pytest
# Code quality
ruff check . && ruff format . && mypy srcContributions are welcome! See CONTRIBUTING.md for guidelines.
MIT License - see LICENSE file for details.
Made with ❤️ for the Python data community