Minimal async AI agent framework with zero bloat
Moonlight is a lightweight SDK for building AI agents with full control. It provides async stateful agents, multimodal input/output (text, images, vision), image generation, structured responses via Pydantic/dataclass, and works with any OpenAI-compatible provider. No dependencies on OpenAI libraries, no hidden abstractions, no framework bloat.
uv pip install moonlight-aiimport asyncio
from moonlight import Provider, Agent, Content
# Configure provider
provider = Provider(
source="openrouter", # or "openai", "deepseek", custom URL
api="your-api-key"
)
# Create agent
analysis_agent = Agent(
provider=provider,
model="qwen/qwen3-4b:free",
system_role="You are a data analyst"
)
# Analyze some data
data = """
Q1 Sales: $125k, Q2 Sales: $157k, Q3 Sales: $198k, Q4 Sales: $223k
Top product: Widget A (45% revenue), Customer satisfaction: 4.2/5
"""
prompt = Content(f"Analyze this business data and provide key insights:\n{data}")
# Run async
response = asyncio.run(analysis_agent.run(prompt))
print(response.content)
# Output: The business shows strong growth momentum with 78% increase from Q1 to Q4...Return type-safe responses using Pydantic models or dataclasses:
from pydantic import BaseModel
from typing import List
from enum import Enum
class Sentiment(str, Enum):
POSITIVE = "positive"
NEGATIVE = "negative"
NEUTRAL = "neutral"
class Entity(BaseModel):
name: str
type: str # person, organization, location, etc.
mentions: int
class Analysis(BaseModel):
sentiment: Sentiment
confidence: float
key_topics: List[str]
entities: List[Entity]
summary: str
sentiment_agent = Agent(
provider=provider,
model="qwen/qwen3-4b:free",
output_schema=Analysis # Automatic JSON mode + validation
)
text = """
Apple Inc. announced record quarterly earnings today, with CEO Tim Cook
praising the team's innovation. The iPhone 15 sales exceeded expectations
in Asian markets, particularly China and India.
"""
result: Analysis = asyncio.run(sentiment_agent.run(Content(f"Analyze this text:\n{text}")))
print(result.sentiment)
# Output: Sentiment.POSITIVE
print(result.confidence)
# Output: 0.92
print(result.entities[0].name)
# Output: Apple Inc.
print(result.summary)
# Output: Apple reports strong earnings driven by iPhone 15 success in AsiaThe SDK automatically:
- Enables JSON mode on the provider
- Injects schema into system prompt
- Validates and parses response into your model
- Handles nested structures and optional fields
Moonlight does not let the model execute tools. Instead, the model produces a structured action or parameter object, and your code executes the function. This keeps all control flow in your program and works with any provider or model.
Moonlight follows a simple workflow:
- The agent produces structured parameters
- Your code executes the function
- Your code decides the next step
from pydantic import BaseModel
from typing import Literal
import asyncio
# Define your tool's parameter schema
class SearchParams(BaseModel):
query: str
max_results: int = 5
date_filter: str = "any"
# Create agent with structured output
tool_agent = Agent(
provider=provider,
model="qwen/qwen3-coder:free",
output_schema=SearchParams,
system_role="You help users search. Output only the search parameters needed."
)
# Get parameters from agent
params = asyncio.run(tool_agent.run(
Content("Find recent papers about quantum computing, limit to 3 results")
))
print(params.query)
# Output: "quantum computing papers 2024"
print(params.max_results)
# Output: 3
# Execute the actual tool with the parameters
results = search_papers(query=params.query, max_results=params.max_results)
print(results)
# Output: [{'title': 'Advances in Quantum...', 'authors': [...], ...}, ...]For complex workflows requiring multiple steps, compose agents explicitly:
from enum import Enum
from textwrap import dedent
from typing import Optional
class ActionType(str, Enum):
SEARCH = "search"
FETCH = "fetch"
SUMMARIZE = "summarize"
DONE = "done"
class ActionPlan(BaseModel):
action: ActionType
reasoning: str
query: Optional[str] = None
url: Optional[str] = None
content: Optional[str] = None
system_role = dedent("""
You are a research assistant that plans actions step by step.
Fields explanation:
- action: The type of action to take (SEARCH, FETCH, SUMMARIZE, or DONE)
- reasoning: Brief explanation of why you chose this action
- query: Search query string (only fill when action=SEARCH)
- url: Web URL to fetch (only fill when action=FETCH)
- content: Text content to summarize (only fill when action=SUMMARIZE)
For each response, choose ONE action and fill ONLY the relevant field:
- If action=SEARCH: Fill 'query' with search terms. Leave url and content as None.
- If action=FETCH: Fill 'url' with the web address. Leave query and content as None.
- If action=SUMMARIZE: Fill 'content' with text to summarize. Leave query and url as None.
- If action=DONE: Leave query, url, and content as None.
Always fill 'reasoning' and 'action'. Only fill the one optional field relevant to your chosen action.
""")
planner = Agent(
provider=provider,
model="anthropic/claude-opus-4.5",
output_schema=ActionPlan,
system_role=system_role
)
# Explicit multi-step loop with full visibility and control
question = "What are the latest breakthroughs in fusion energy?"
context = {"question": question, "findings": []}
for step in range(5): # Maximum 5 steps
# Get next action from planner
plan = asyncio.run(planner.run(
Content(f"Question: {question}\n\nContext so far: {context}\n\nWhat should we do next?")
))
print(f"Step {step + 1}: {plan.action} - {plan.reasoning}")
# Execute action based on plan
if plan.action == ActionType.SEARCH:
results = web_search(plan.query)
context["findings"].append({"type": "search", "query": plan.query, "results": results})
elif plan.action == ActionType.FETCH:
content = fetch_url(plan.url)
context["findings"].append({"type": "fetch", "url": plan.url, "content": content})
elif plan.action == ActionType.SUMMARIZE:
summary = summarize_text(plan.content)
context["summary"] = summary
elif plan.action == ActionType.DONE:
print("Research complete")
break
# Add custom guards and budgets
if len(context["findings"]) > 10:
print("Maximum findings reached, stopping")
break
print(f"Final answer: {context.get('summary', 'No conclusion reached')}")Implicit systems hide control flow inside the LLM. Moonlight keeps it explicit:
- Works with any model (no provider lock-in)
- Debuggable (inspect every step)
- Composable (chain agents and tools freely)
- Controllable (add retries, guards, budgets)
- Testable (mock tool outputs)
Comparison:
# Implicit: Hidden loop
agent.run(tools=[search, fetch])
# Explicit: Visible control
params = agent.run(...)
result = search(**params)Explicit control trades minor convenience for production-grade reliability, debuggability, and flexibility.
Send images alongside text (URLs, local files, or base64):
response = asyncio.run(agent.run(
Content(
text="What's in these images?",
images=[
"https://example.com/image.jpg", # URL
"/path/to/local/image.png", # Local file
"data:image/jpeg;base64,..." # Base64
]
)
))
print(response.content)
# Output: The first image shows a sunset over mountains...Images are automatically:
- Downloaded from URLs (async)
- Read from disk with proper MIME types
- Converted to base64 data URIs
- Validated and filtered
Generate images directly from text prompts using multimodal models:
import asyncio
import base64
image_agent = Agent(
provider=provider,
model="google/gemini-3-pro-preview", # or other image-capable models
image_gen=True # Enable image generation mode
)
# Run the image generation prompt
response = asyncio.run(image_agent.run(
Content("Create a serene mountain landscape at sunset with a lake reflection")
))
# This prints the text description or caption returned by the model (if any)
print(response.content)
# Example output: "A calm mountain lake at sunset with orange and purple skies..."
# If the model returned images, they will be in response.images as base64 data URLs
if response.images:
for i, img_url in enumerate(response.images):
# This prints the raw base64 data URL (useful for debugging or logging)
print(f"Generated image (base64 data URL): {img_url}")
# Image is in "" format.
# strip the header and keep only the base64 part
img_base64 = img_url.split(",", 1)[1]
# Decode base64 into raw image bytes
img_bytes = base64.b64decode(img_base64)
# Save the decoded image bytes to a PNG file on disk
out_path = f"generated_{i}.png"
with open(out_path, "wb") as f:
f.write(img_bytes)
# This prints where the image was saved on disk
print(f"Saved image to {out_path}")The SDK automatically:
- Validates model supports image output
- Enables multimodal mode (
["text", "image"]) - Returns base64-encoded images in response
- Prevents using
image_genwithoutput_schema(incompatible)
Note: Image generation and structured output schemas are mutually exclusive.
Agents maintain stateful conversation history:
# DeepSeek provider example
deepseek_provider = Provider(source="deepseek", api="your-deepseek-key")
agent = Agent(provider=deepseek_provider, model="deepseek-chat")
# First turn
asyncio.run(agent.run(Content("My name is Alice")))
# Second turn (agent remembers context)
response = asyncio.run(agent.run(Content("What's my name?")))
print(response.content)
# Output: Your name is Alice
# Clear history
agent.clear()
# Update system role mid-conversation
agent.update_system_role("You are now a pirate")Works with any OpenAI-compatible API:
# Built-in providers
Provider(source="openai", api="sk-...")
Provider(source="deepseek", api="sk-...")
Provider(source="openrouter", api="sk-...")
Provider(source="together", api="...")
Provider(source="groq", api="gsk-...")
Provider(source="google", api="...")
# Custom endpoints
Provider(source="http://localhost:11434/v1", api="ollama")
Provider(source="https://api.custom.com/v1", api="key")Supported providers: OpenAI, DeepSeek, Together, Groq, Google AI, HuggingFace, OpenRouter, or any custom OpenAI-compatible endpoint.
Agents automatically validate model capabilities on initialization:
agent = Agent(
provider=provider,
model="qwen/qwen3-4b:free", # Checks if model exists in given provider
max_completion_tokens=8192, # Validates against model limits
image_gen=True # Validates against model limits
)
# Automatically checks:
# - Endpoint compatibility
# - Model exists in provider
# - Context length and max_completion_tokens
# - Input modalities (text, image, audio, video)
# - Output modalities (text, image)
# - Reasoning capability supportValidation prevents runtime errors by checking:
- Endpoint Compatibility: Checks whether the Provider source has the necessary routes to be compatible
- Model existence: Ensures the model is available from the provider
- Token limits: Validates
max_completion_tokensdoesn't exceed model capacity - Modality support: Verifies model supports requested input/output types (images, video, etc.)
- Image generation: Confirms model can generate images when
image_gen=True
Errors are raised immediately during agent initialization with clear messages:
try:
agent = Agent(
provider=provider,
model="qwen-4b",
image_gen=True
)
except AgentError as e:
print(e)
# Output: This model does not support image generationAgents track token usage automatically:
agent = Agent(provider=provider, model="anthropic/claude-opus-4.5")
asyncio.run(agent.run(Content("Hello")))
print(agent.get_total_tokens())
# Output: 156 (total tokens used)Detailed error messages from providers with intelligent parsing:
response = asyncio.run(agent.run(Content("...")))
if response.error:
print(f"Error: {response.error}")
# Output: Error: Rate limited - too many requests
else:
print(response.content)
# Output: [normal response content]Handles:
- Invalid credentials (401): Expired OAuth tokens, invalid API keys
- Rate limits (429): Too many requests, retry guidance
- Content moderation (403): Specific reasons for flagged content
- Parameter errors (400): Detailed validation messages (e.g., "max_tokens exceeds limit")
- Insufficient credits (402): Clear payment/billing errors
- Timeout errors (408): Request took too long
- Provider errors (502): Model down or invalid response
- Routing errors (503): No provider meets requirements
- Provider-specific errors: Parses nested JSON error structures
Error messages include context from provider metadata when available, making debugging easier.
moonlight/
└── src/
├── agent/
│ ├── base.py # Content dataclass
│ ├── history.py # AgentHistory (conversation + image processing)
│ └── main.py # Agent class
├── provider/
│ ├── main.py # Provider class
│ └── completion.py # GetCompletion (async API calls)
└── helpers/
└── model_converter.py # Schema/model conversion utilities
Moonlight is intentionally minimal:
- No framework lock-in: Standard Python async, bring your own orchestration
- No hidden magic: Direct API calls, explicit control flow
- No bloat: Zero dependencies on OpenAI SDK or heavy frameworks
- Full control: Access raw responses, customize at any level
- Provider agnostic: Works with any OpenAI-compatible API
To stay lightweight, Moonlight does not include:
- Multi-agent orchestration (build your own with asyncio)
- RAG systems or vector databases
- Web scraping or search
- Streaming responses
- Built-in retry logic (in development)
- Observability or logging (in development)
- Audio/video output (in development)
- MCP (Model Context Protocol) integration (in consideration)
These are left to you or future extensions to keep the core minimal.
agent = Agent(
provider=provider,
model="mistralai/devstral-2512:free",
system_role="You are an expert analyst",
output_schema=MyModel, # Optional structured output
image_gen=False, # Enable image generation (conflicts with output_schema)
temperature=0.7,
top_p=0.9,
top_k=40,
max_completion_tokens=2048,
frequency_penalty=0.5,
presence_penalty=0.5,
repetition_penalty=1.1
)
# Access history
messages = agent.get_history()
# Token usage
tokens = agent.get_total_tokens()Supported Parameters:
temperature,top_p,top_k: Sampling parametersmax_completion_tokens,max_output_tokens: Token limitsfrequency_penalty,presence_penalty,repetition_penalty: Repetition controltools,tool_choice: Tool calling configuration (planned)plugins: Provider-specific pluginsreasoning,verbosity: Control reasoning traces
# Clone repo
git clone https://github.com/ecstra/moonlight.git
cd moonlight
# Build distribution
pip install build twine
python -m build
# Install locally
pip install dist/moonlight_ai-*.whl
# Test
python -c "from moonlight import Agent; print('OK')"MIT License - use freely in personal and commercial projects.
