Skip to content

Lightweight AI Agents SDK for building intelligent automation systems

License

Notifications You must be signed in to change notification settings

ecstra/moonlight

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MoonLight

Minimal async AI agent framework with zero bloat

Python 3.9+ License: MIT PyPI version PyPI Downloads

Moonlight is a lightweight SDK for building AI agents with full control. It provides async stateful agents, multimodal input/output (text, images, vision), image generation, structured responses via Pydantic/dataclass, and works with any OpenAI-compatible provider. No dependencies on OpenAI libraries, no hidden abstractions, no framework bloat.

Installation

uv pip install moonlight-ai

Quick Start

import asyncio
from moonlight import Provider, Agent, Content

# Configure provider
provider = Provider(
    source="openrouter",  # or "openai", "deepseek", custom URL
    api="your-api-key"
)

# Create agent
analysis_agent = Agent(
    provider=provider,
    model="qwen/qwen3-4b:free",
    system_role="You are a data analyst"
)

# Analyze some data
data = """
Q1 Sales: $125k, Q2 Sales: $157k, Q3 Sales: $198k, Q4 Sales: $223k
Top product: Widget A (45% revenue), Customer satisfaction: 4.2/5
"""

prompt = Content(f"Analyze this business data and provide key insights:\n{data}")

# Run async
response = asyncio.run(analysis_agent.run(prompt))
print(response.content)
# Output: The business shows strong growth momentum with 78% increase from Q1 to Q4...

Core Features

Structured Output

Return type-safe responses using Pydantic models or dataclasses:

from pydantic import BaseModel
from typing import List
from enum import Enum

class Sentiment(str, Enum):
    POSITIVE = "positive"
    NEGATIVE = "negative"
    NEUTRAL = "neutral"

class Entity(BaseModel):
    name: str
    type: str  # person, organization, location, etc.
    mentions: int

class Analysis(BaseModel):
    sentiment: Sentiment
    confidence: float
    key_topics: List[str]
    entities: List[Entity]
    summary: str

sentiment_agent = Agent(
    provider=provider,
    model="qwen/qwen3-4b:free",
    output_schema=Analysis  # Automatic JSON mode + validation
)

text = """
Apple Inc. announced record quarterly earnings today, with CEO Tim Cook 
praising the team's innovation. The iPhone 15 sales exceeded expectations 
in Asian markets, particularly China and India.
"""

result: Analysis = asyncio.run(sentiment_agent.run(Content(f"Analyze this text:\n{text}")))
print(result.sentiment)
# Output: Sentiment.POSITIVE

print(result.confidence)
# Output: 0.92

print(result.entities[0].name)
# Output: Apple Inc.

print(result.summary)
# Output: Apple reports strong earnings driven by iPhone 15 success in Asia

The SDK automatically:

  • Enables JSON mode on the provider
  • Injects schema into system prompt
  • Validates and parses response into your model
  • Handles nested structures and optional fields

Tool Calling (Explicit, Schema-Driven)

Moonlight does not let the model execute tools. Instead, the model produces a structured action or parameter object, and your code executes the function. This keeps all control flow in your program and works with any provider or model.

Philosophy

Moonlight follows a simple workflow:

  1. The agent produces structured parameters
  2. Your code executes the function
  3. Your code decides the next step

Basic Example

from pydantic import BaseModel
from typing import Literal
import asyncio

# Define your tool's parameter schema
class SearchParams(BaseModel):
    query: str
    max_results: int = 5
    date_filter: str = "any"

# Create agent with structured output
tool_agent = Agent(
    provider=provider,
    model="qwen/qwen3-coder:free",
    output_schema=SearchParams,
    system_role="You help users search. Output only the search parameters needed."
)

# Get parameters from agent
params = asyncio.run(tool_agent.run(
    Content("Find recent papers about quantum computing, limit to 3 results")
))

print(params.query)
# Output: "quantum computing papers 2024"

print(params.max_results)
# Output: 3

# Execute the actual tool with the parameters
results = search_papers(query=params.query, max_results=params.max_results)
print(results)
# Output: [{'title': 'Advances in Quantum...', 'authors': [...], ...}, ...]

Multi-Step Workflow with Explicit Control

For complex workflows requiring multiple steps, compose agents explicitly:

from enum import Enum
from textwrap import dedent
from typing import Optional

class ActionType(str, Enum):
    SEARCH = "search"
    FETCH = "fetch"
    SUMMARIZE = "summarize"
    DONE = "done"

class ActionPlan(BaseModel):
    action: ActionType
    reasoning: str
    query: Optional[str] = None
    url: Optional[str] = None
    content: Optional[str] = None

system_role = dedent("""
You are a research assistant that plans actions step by step.

Fields explanation:
- action: The type of action to take (SEARCH, FETCH, SUMMARIZE, or DONE)
- reasoning: Brief explanation of why you chose this action
- query: Search query string (only fill when action=SEARCH)
- url: Web URL to fetch (only fill when action=FETCH)
- content: Text content to summarize (only fill when action=SUMMARIZE)

For each response, choose ONE action and fill ONLY the relevant field:
- If action=SEARCH: Fill 'query' with search terms. Leave url and content as None.
- If action=FETCH: Fill 'url' with the web address. Leave query and content as None.
- If action=SUMMARIZE: Fill 'content' with text to summarize. Leave query and url as None.
- If action=DONE: Leave query, url, and content as None.

Always fill 'reasoning' and 'action'. Only fill the one optional field relevant to your chosen action.
""")

planner = Agent(
    provider=provider,
    model="anthropic/claude-opus-4.5",
    output_schema=ActionPlan,
    system_role=system_role
)

# Explicit multi-step loop with full visibility and control
question = "What are the latest breakthroughs in fusion energy?"
context = {"question": question, "findings": []}

for step in range(5):  # Maximum 5 steps
    # Get next action from planner
    plan = asyncio.run(planner.run(
        Content(f"Question: {question}\n\nContext so far: {context}\n\nWhat should we do next?")
    ))
  
    print(f"Step {step + 1}: {plan.action} - {plan.reasoning}")
  
    # Execute action based on plan
    if plan.action == ActionType.SEARCH:
        results = web_search(plan.query)
        context["findings"].append({"type": "search", "query": plan.query, "results": results})
  
    elif plan.action == ActionType.FETCH:
        content = fetch_url(plan.url)
        context["findings"].append({"type": "fetch", "url": plan.url, "content": content})
  
    elif plan.action == ActionType.SUMMARIZE:
        summary = summarize_text(plan.content)
        context["summary"] = summary
  
    elif plan.action == ActionType.DONE:
        print("Research complete")
        break
  
    # Add custom guards and budgets
    if len(context["findings"]) > 10:
        print("Maximum findings reached, stopping")
        break

print(f"Final answer: {context.get('summary', 'No conclusion reached')}")

Why Not Implicit Tool Calling?

Implicit systems hide control flow inside the LLM. Moonlight keeps it explicit:

  • Works with any model (no provider lock-in)
  • Debuggable (inspect every step)
  • Composable (chain agents and tools freely)
  • Controllable (add retries, guards, budgets)
  • Testable (mock tool outputs)

Comparison:

# Implicit: Hidden loop
agent.run(tools=[search, fetch])

# Explicit: Visible control
params = agent.run(...)
result = search(**params)

Explicit control trades minor convenience for production-grade reliability, debuggability, and flexibility.

Multimodal Input

Send images alongside text (URLs, local files, or base64):

response = asyncio.run(agent.run(
    Content(
        text="What's in these images?",
        images=[
            "https://example.com/image.jpg",  # URL
            "/path/to/local/image.png",        # Local file
            "data:image/jpeg;base64,..."       # Base64
        ]
    )
))
print(response.content)
# Output: The first image shows a sunset over mountains...

Images are automatically:

  • Downloaded from URLs (async)
  • Read from disk with proper MIME types
  • Converted to base64 data URIs
  • Validated and filtered

Image Generation

Generate images directly from text prompts using multimodal models:

import asyncio
import base64

image_agent = Agent(
    provider=provider,
    model="google/gemini-3-pro-preview",  # or other image-capable models
    image_gen=True  # Enable image generation mode
)

# Run the image generation prompt
response = asyncio.run(image_agent.run(
    Content("Create a serene mountain landscape at sunset with a lake reflection")
))

# This prints the text description or caption returned by the model (if any)
print(response.content)
# Example output: "A calm mountain lake at sunset with orange and purple skies..."

# If the model returned images, they will be in response.images as base64 data URLs
if response.images:
    for i, img_url in enumerate(response.images):

        # This prints the raw base64 data URL (useful for debugging or logging)
        print(f"Generated image (base64 data URL): {img_url}")

        # Image is in "" format.
        # strip the header and keep only the base64 part
        img_base64 = img_url.split(",", 1)[1]

        # Decode base64 into raw image bytes
        img_bytes = base64.b64decode(img_base64)

        # Save the decoded image bytes to a PNG file on disk
        out_path = f"generated_{i}.png"
        with open(out_path, "wb") as f:
            f.write(img_bytes)

        # This prints where the image was saved on disk
        print(f"Saved image to {out_path}")

The SDK automatically:

  • Validates model supports image output
  • Enables multimodal mode (["text", "image"])
  • Returns base64-encoded images in response
  • Prevents using image_gen with output_schema (incompatible)

Note: Image generation and structured output schemas are mutually exclusive.

Conversation History

Agents maintain stateful conversation history:

# DeepSeek provider example
deepseek_provider = Provider(source="deepseek", api="your-deepseek-key")
agent = Agent(provider=deepseek_provider, model="deepseek-chat")

# First turn
asyncio.run(agent.run(Content("My name is Alice")))

# Second turn (agent remembers context)
response = asyncio.run(agent.run(Content("What's my name?")))
print(response.content)
# Output: Your name is Alice

# Clear history
agent.clear()

# Update system role mid-conversation
agent.update_system_role("You are now a pirate")

Provider Support

Works with any OpenAI-compatible API:

# Built-in providers
Provider(source="openai", api="sk-...")
Provider(source="deepseek", api="sk-...")
Provider(source="openrouter", api="sk-...")
Provider(source="together", api="...")
Provider(source="groq", api="gsk-...")
Provider(source="google", api="...")

# Custom endpoints
Provider(source="http://localhost:11434/v1", api="ollama")
Provider(source="https://api.custom.com/v1", api="key")

Supported providers: OpenAI, DeepSeek, Together, Groq, Google AI, HuggingFace, OpenRouter, or any custom OpenAI-compatible endpoint.

Model Validation

Agents automatically validate model capabilities on initialization:

agent = Agent(
    provider=provider,
    model="qwen/qwen3-4b:free",  # Checks if model exists in given provider
    max_completion_tokens=8192,  # Validates against model limits
    image_gen=True               # Validates against model limits
)

# Automatically checks:
# - Endpoint compatibility
# - Model exists in provider
# - Context length and max_completion_tokens
# - Input modalities (text, image, audio, video)
# - Output modalities (text, image)
# - Reasoning capability support

Validation prevents runtime errors by checking:

  • Endpoint Compatibility: Checks whether the Provider source has the necessary routes to be compatible
  • Model existence: Ensures the model is available from the provider
  • Token limits: Validates max_completion_tokens doesn't exceed model capacity
  • Modality support: Verifies model supports requested input/output types (images, video, etc.)
  • Image generation: Confirms model can generate images when image_gen=True

Errors are raised immediately during agent initialization with clear messages:

try:
    agent = Agent(
        provider=provider,
        model="qwen-4b",
        image_gen=True
    )
except AgentError as e:
    print(e)
    # Output: This model does not support image generation

Token Tracking

Agents track token usage automatically:

agent = Agent(provider=provider, model="anthropic/claude-opus-4.5")
asyncio.run(agent.run(Content("Hello")))

print(agent.get_total_tokens())
# Output: 156 (total tokens used)

Error Handling

Detailed error messages from providers with intelligent parsing:

response = asyncio.run(agent.run(Content("...")))

if response.error:
    print(f"Error: {response.error}")
    # Output: Error: Rate limited - too many requests
else:
    print(response.content)
    # Output: [normal response content]

Handles:

  • Invalid credentials (401): Expired OAuth tokens, invalid API keys
  • Rate limits (429): Too many requests, retry guidance
  • Content moderation (403): Specific reasons for flagged content
  • Parameter errors (400): Detailed validation messages (e.g., "max_tokens exceeds limit")
  • Insufficient credits (402): Clear payment/billing errors
  • Timeout errors (408): Request took too long
  • Provider errors (502): Model down or invalid response
  • Routing errors (503): No provider meets requirements
  • Provider-specific errors: Parses nested JSON error structures

Error messages include context from provider metadata when available, making debugging easier.

Architecture

moonlight/
└── src/
    ├── agent/
    │   ├── base.py             # Content dataclass
    │   ├── history.py          # AgentHistory (conversation + image processing)
    │   └── main.py             # Agent class
    ├── provider/
    │   ├── main.py             # Provider class
    │   └── completion.py       # GetCompletion (async API calls)
    └── helpers/
        └── model_converter.py  # Schema/model conversion utilities

Design Philosophy

Moonlight is intentionally minimal:

  • No framework lock-in: Standard Python async, bring your own orchestration
  • No hidden magic: Direct API calls, explicit control flow
  • No bloat: Zero dependencies on OpenAI SDK or heavy frameworks
  • Full control: Access raw responses, customize at any level
  • Provider agnostic: Works with any OpenAI-compatible API

What Moonlight Doesn't Do

To stay lightweight, Moonlight does not include:

  • Multi-agent orchestration (build your own with asyncio)
  • RAG systems or vector databases
  • Web scraping or search
  • Streaming responses
  • Built-in retry logic (in development)
  • Observability or logging (in development)
  • Audio/video output (in development)
  • MCP (Model Context Protocol) integration (in consideration)

These are left to you or future extensions to keep the core minimal.

Advanced Configuration

agent = Agent(
    provider=provider,
    model="mistralai/devstral-2512:free",
    system_role="You are an expert analyst",
    output_schema=MyModel,   # Optional structured output
    image_gen=False,         # Enable image generation (conflicts with output_schema)
    temperature=0.7,
    top_p=0.9,
    top_k=40,
    max_completion_tokens=2048,
    frequency_penalty=0.5,
    presence_penalty=0.5,
    repetition_penalty=1.1
)

# Access history
messages = agent.get_history()

# Token usage
tokens = agent.get_total_tokens()

Supported Parameters:

  • temperature, top_p, top_k: Sampling parameters
  • max_completion_tokens, max_output_tokens: Token limits
  • frequency_penalty, presence_penalty, repetition_penalty: Repetition control
  • tools, tool_choice: Tool calling configuration (planned)
  • plugins: Provider-specific plugins
  • reasoning, verbosity: Control reasoning traces

Building From Source

# Clone repo
git clone https://github.com/ecstra/moonlight.git
cd moonlight

# Build distribution
pip install build twine
python -m build

# Install locally
pip install dist/moonlight_ai-*.whl

# Test
python -c "from moonlight import Agent; print('OK')"

License

MIT License - use freely in personal and commercial projects.

About

Lightweight AI Agents SDK for building intelligent automation systems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages