AI-driven test generation and execution platform — automatically produces unit, integration, end-to-end (E2E), performance, accessibility, and visual tests. Built with self-healing selectors, semantic element targeting, multi-framework execution (Playwright, Cypress, Puppeteer, WebdriverIO), and CI-friendly outputs to integrate easily into your pipelines.
Generate native tests and documentation for the industry's leading tools:
For a detailed roadmap including planned features, timelines, and success metrics, see ROADMAP.md.
Current Status Summary:
- ✅ Unit Testing: Beta (90% success rate) - Core functionality working, auto healing implemented
- ✅ Documentation: Beta - Generates Storybook stories and documentation
- ✅ Visual Testing: Added in documentation generation
⚠️ E2E Testing: In Progress - Adapters exist, full implementation in progress- ❌ Performance Testing: Planned for v2.0 - Architecture design phase
- ❌ Accessibility Testing: Planned for v2.0 - Axe/pa11y integration planned
npm install -g riflebird
# or
pnpm add -g riflebirdBenchmark results from internal testing. Success rate = percentage of generated tests that compile and pass with correct assertions.
| Model | Provider | Test Type | Success Rate | Notes |
|---|---|---|---|---|
| claude-sonnet-4.5 (Copilot CLI) | Anthropic | Unit | 99% | Excellent for complex test cases |
| Kimi-k2:1t | Moonshot AI | Unit | 99% | Excellent for complex test cases |
| Devstral 2 | Frontier AI | Unit | 99% | Excellent for complex test cases |
| gpt-5-mini (Copilot CLI) | OpenAI | Unit | 90% | Handles complex components well |
| qwen3-coder:480b-cloud | Alibaba | Unit | 50% | Best for simple components |
| Gemini 3 Pro | Unit / E2E | N/A | Testing in progress | |
| GPT-4 | OpenAI | Unit / E2E | N/A | Testing in progress |
| GPT-4o | OpenAI | Unit | N/A | Testing in progress |
Results based on internal validation; performance may vary by use case.
- Initialize Riflebird in your project:
riflebird init- Generate tests for all files:
riflebird fire --all- Generate a test for a single file:
riflebird fire ./src/components/cards/PeopleCard/PeopleCard.component.tsx- Use scope filtering to target specific file types:
riflebird fire --all --scope component --unitFor more advanced usage including glob patterns, test type filtering, and scope options, see the Fire Command Documentation.
- 🎯 AI-Powered Test Generation - Describe tests in natural language
- 📚 Auto-Documentation & Visual Testing - Generate Storybook stories, docs, and visual regression tests
- 🔄 Self-Healing - Automatically fix broken tests
- 🧠 Smart Selectors - Intelligent element targeting
- 🚀 Multi-Framework - Supports Playwright, Cypress, Puppeteer, WebdriverIO
- 🔒 Secret Sanitization - Automatically detects and redacts API keys, tokens, and credentials before sending code to LLM providers (learn more)
riflebird init- Initialize configurationriflebird fire [path]- Generate and execute tests with flexible filtering options (detailed documentation)
You can use the GitHub Copilot CLI as an AI provider by setting the AI provider to copilot-cli.
Configure the CLI command and any static arguments in your riflebird.config.ts under ai.copilotCli:
export default defineConfig({
ai: {
provider: 'copilot-cli',
model: 'gpt-5-mini',
copilotCli: {
// `cmd` is fixed to the official `copilot` executable. Configure any
// static subcommands / flags here.
args: ['query'], // optional static args
},
},
});The CLI provider will feed the chat messages to the command's stdin and interpret stdout as the assistant response. This is useful for local/offline workflows where an external CLI provides AI completions.
You can use the Gemini CLI as an AI provider by setting the AI provider to gemini-cli.
Ensure you have the gemini command executable in your path and authenticated.
export default defineConfig({
ai: {
provider: 'gemini-cli',
model: 'gemini-1.5-pro',
},
});Humans make mistakes. We've got you covered.
Riflebird includes a built-in security layer that automatically detects and redacts sensitive data before sending code to AI providers. Even if secrets accidentally end up in your code (we know it happens!), they won't reach the LLM.
┌─────────────────────────────────────────────────────────────┐
│ YOUR PROJECT FILES │
│ 📄 api-client.ts │
│ const apiKey = "sk-1234567890abcdef..." │
│ const awsKey = "AKIAIOSFODNN7PRODXYZ" │
│ 📄 config.json │
│ { "githubToken": "ghp_abc123xyz..." } │
│ 📄 .env │
│ DATABASE_URL=postgres://user:pass@host/db │
└────────────┬────────────────────────────────────────────────┘
│
│ riflebird fire --all
▼
┌────────────────────────────────────┐
│ 1. Read Files │
│ ProjectFileWalker │
└────────┬───────────────────────────┘
│
│ 🔍 Scan for patterns
▼
┌────────────────────────────────────┐
│ 2. Detect Secrets │
│ • API keys (sk-, AKIA...) │
│ • Tokens (ghp_, jwt...) │
│ • Passwords, DB URLs │
│ • SSH keys │
└────────┬───────────────────────────┘
│
│ ✂️ Redact values
▼
┌────────────────────────────────────────────┐
│ 3. Sanitized Code │
│ apiKey = "[REDACTED_API_KEY_3f810a]" │
│ awsKey = "[REDACTED_AWS_KEY_f8a2b1]" │
│ token = "[REDACTED_GITHUB_TOKEN_4b9d2e]" │
└────────┬───────────────────────────────────┘
│
│ 🔒 Safe to analyze
▼
┌────────────────────────────────────┐
│ 4. Send to LLM │
│ OpenAI / Anthropic / Local │
└────────────────────────────────────┘
✅ Your secrets never leave your machine in plaintext
📊 Only detection stats logged: "Sanitized 3 secrets from api-client.ts"
NOTE: Sanitization previously performed inside the `ai-client` helper was removed to avoid double-sanitization. Riflebird performs sanitization at a single entry point: `ProjectFileWalker.readFileFromProject()` — all code is sanitized there before being passed to downstream components.
Protected secret types:
- API Keys (OpenAI, Anthropic, generic)
- AWS Access Keys & Secret Keys
- GitHub Tokens
- SSH Private Keys
- Database URLs (PostgreSQL, MySQL, MongoDB, Redis)
- JWT Tokens
- OAuth Tokens
- Passwords & Environment Variables
Why this matters:
- 🔴 Developers accidentally commit secrets (it happens to everyone!)
- 🔴 Test files sometimes contain real credentials during development
- 🔴 Config files may have production passwords temporarily
- 🛡️ Riflebird protects you automatically - no configuration needed
Key features:
- ✅ Secrets never leave your machine in plaintext
- ✅ Automatic detection with smart false-positive filtering
- ✅ Safe logging (only counts, never actual values)
- ✅ Original files unchanged on disk
- ✅ Always active - protection you can forget about
→ Read full security documentation
See CONTRIBUTING.md for detailed development guidelines.
# Install dependencies
pnpm install
# Build all packages
pnpm build
# Run in development mode
pnpm dev
# Run tests with coverage
pnpm test -- --run --coverageWe welcome contributions! Please see our Contributing Guide for details on:
- Development setup
- Testing standards (TDD approach)
- Code quality requirements
- TypeScript conventions
- Pull request process
MIT