Skip to content

Automated test generation & repair — produces unit, integration, E2E, performance, accessibility and visual tests automatically to cut development time.

License

Notifications You must be signed in to change notification settings

ebubekirtabak/riflebird

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Riflebird Logo

Riflebird

Test Coverage License: MIT npm version npm downloads

AI-driven test generation and execution platform — automatically produces unit, integration, end-to-end (E2E), performance, accessibility, and visual tests. Built with self-healing selectors, semantic element targeting, multi-framework execution (Playwright, Cypress, Puppeteer, WebdriverIO), and CI-friendly outputs to integrate easily into your pipelines.

Framework Ecosystem

Generate native tests and documentation for the industry's leading tools:

Vitest Jest Mocha Storybook Chromatic

Project Status

For a detailed roadmap including planned features, timelines, and success metrics, see ROADMAP.md.

Current Status Summary:

  • Unit Testing: Beta (90% success rate) - Core functionality working, auto healing implemented
  • Documentation: Beta - Generates Storybook stories and documentation
  • Visual Testing: Added in documentation generation
  • ⚠️ E2E Testing: In Progress - Adapters exist, full implementation in progress
  • Performance Testing: Planned for v2.0 - Architecture design phase
  • Accessibility Testing: Planned for v2.0 - Axe/pa11y integration planned

Installation

npm install -g riflebird
# or
pnpm add -g riflebird

LLM Model Performance

Benchmark results from internal testing. Success rate = percentage of generated tests that compile and pass with correct assertions.

Model Provider Test Type Success Rate Notes
claude-sonnet-4.5 (Copilot CLI) Anthropic Unit 99% Excellent for complex test cases
Kimi-k2:1t Moonshot AI Unit 99% Excellent for complex test cases
Devstral 2 Frontier AI Unit 99% Excellent for complex test cases
gpt-5-mini (Copilot CLI) OpenAI Unit 90% Handles complex components well
qwen3-coder:480b-cloud Alibaba Unit 50% Best for simple components
Gemini 3 Pro Google Unit / E2E N/A Testing in progress
GPT-4 OpenAI Unit / E2E N/A Testing in progress
GPT-4o OpenAI Unit N/A Testing in progress

Results based on internal validation; performance may vary by use case.

Quick Start

  1. Initialize Riflebird in your project:
riflebird init
  1. Generate tests for all files:
riflebird fire --all
  1. Generate a test for a single file:
riflebird fire ./src/components/cards/PeopleCard/PeopleCard.component.tsx
  1. Use scope filtering to target specific file types:
riflebird fire --all --scope component --unit

For more advanced usage including glob patterns, test type filtering, and scope options, see the Fire Command Documentation.

Features

  • 🎯 AI-Powered Test Generation - Describe tests in natural language
  • 📚 Auto-Documentation & Visual Testing - Generate Storybook stories, docs, and visual regression tests
  • 🔄 Self-Healing - Automatically fix broken tests
  • 🧠 Smart Selectors - Intelligent element targeting
  • 🚀 Multi-Framework - Supports Playwright, Cypress, Puppeteer, WebdriverIO
  • 🔒 Secret Sanitization - Automatically detects and redacts API keys, tokens, and credentials before sending code to LLM providers (learn more)

Commands

  • riflebird init - Initialize configuration
  • riflebird fire [path] - Generate and execute tests with flexible filtering options (detailed documentation)

Copilot CLI provider

You can use the GitHub Copilot CLI as an AI provider by setting the AI provider to copilot-cli. Configure the CLI command and any static arguments in your riflebird.config.ts under ai.copilotCli:

export default defineConfig({
  ai: {
    provider: 'copilot-cli',
    model: 'gpt-5-mini',
    copilotCli: {
      // `cmd` is fixed to the official `copilot` executable. Configure any
      // static subcommands / flags here.
      args: ['query'], // optional static args
    },
  },
});

The CLI provider will feed the chat messages to the command's stdin and interpret stdout as the assistant response. This is useful for local/offline workflows where an external CLI provides AI completions.

Gemini CLI Provider

You can use the Gemini CLI as an AI provider by setting the AI provider to gemini-cli. Ensure you have the gemini command executable in your path and authenticated.

export default defineConfig({
  ai: {
    provider: 'gemini-cli',
    model: 'gemini-1.5-pro',
  },
});

Security

Automatic Secret Sanitization 🔒

Humans make mistakes. We've got you covered.

Riflebird includes a built-in security layer that automatically detects and redacts sensitive data before sending code to AI providers. Even if secrets accidentally end up in your code (we know it happens!), they won't reach the LLM.

How It Works

┌─────────────────────────────────────────────────────────────┐
│                    YOUR PROJECT FILES                       │
│  📄 api-client.ts                                           │
│     const apiKey = "sk-1234567890abcdef..."                 │
│     const awsKey = "AKIAIOSFODNN7PRODXYZ"                   │
│  📄 config.json                                             │
│     { "githubToken": "ghp_abc123xyz..." }                   │
│  📄 .env                                                    │
│     DATABASE_URL=postgres://user:pass@host/db              │
└────────────┬────────────────────────────────────────────────┘
             │
             │ riflebird fire --all
             ▼
    ┌────────────────────────────────────┐
    │   1. Read Files                    │
    │   ProjectFileWalker                │
    └────────┬───────────────────────────┘
             │
             │ 🔍 Scan for patterns
             ▼
    ┌────────────────────────────────────┐
    │   2. Detect Secrets                │
    │   • API keys (sk-, AKIA...)        │
    │   • Tokens (ghp_, jwt...)          │
    │   • Passwords, DB URLs             │
    │   • SSH keys                       │
    └────────┬───────────────────────────┘
             │
             │ ✂️ Redact values
             ▼
    ┌────────────────────────────────────────────┐
    │   3. Sanitized Code                        │
    │   apiKey = "[REDACTED_API_KEY_3f810a]"     │
    │   awsKey = "[REDACTED_AWS_KEY_f8a2b1]"     │
    │   token = "[REDACTED_GITHUB_TOKEN_4b9d2e]" │
    └────────┬───────────────────────────────────┘
             │
             │ 🔒 Safe to analyze
             ▼
    ┌────────────────────────────────────┐
    │   4. Send to LLM                   │
    │   OpenAI / Anthropic / Local       │
    └────────────────────────────────────┘

             ✅ Your secrets never leave your machine in plaintext
             📊 Only detection stats logged: "Sanitized 3 secrets from api-client.ts"

             NOTE: Sanitization previously performed inside the `ai-client` helper was removed to avoid double-sanitization. Riflebird performs sanitization at a single entry point: `ProjectFileWalker.readFileFromProject()` — all code is sanitized there before being passed to downstream components.

Protected secret types:

  • API Keys (OpenAI, Anthropic, generic)
  • AWS Access Keys & Secret Keys
  • GitHub Tokens
  • SSH Private Keys
  • Database URLs (PostgreSQL, MySQL, MongoDB, Redis)
  • JWT Tokens
  • OAuth Tokens
  • Passwords & Environment Variables

Why this matters:

  • 🔴 Developers accidentally commit secrets (it happens to everyone!)
  • 🔴 Test files sometimes contain real credentials during development
  • 🔴 Config files may have production passwords temporarily
  • 🛡️ Riflebird protects you automatically - no configuration needed

Key features:

  • ✅ Secrets never leave your machine in plaintext
  • ✅ Automatic detection with smart false-positive filtering
  • ✅ Safe logging (only counts, never actual values)
  • ✅ Original files unchanged on disk
  • Always active - protection you can forget about

→ Read full security documentation

Development

See CONTRIBUTING.md for detailed development guidelines.

# Install dependencies
pnpm install

# Build all packages
pnpm build

# Run in development mode
pnpm dev

# Run tests with coverage
pnpm test -- --run --coverage

Contributing

We welcome contributions! Please see our Contributing Guide for details on:

  • Development setup
  • Testing standards (TDD approach)
  • Code quality requirements
  • TypeScript conventions
  • Pull request process

License

MIT

About

Automated test generation & repair — produces unit, integration, E2E, performance, accessibility and visual tests automatically to cut development time.

Topics

Resources

License

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages