|
AI-powered visual detection pipeline for aerial search operations |
- Python 3.12+
- pip3 (Python package installer)
- (Optional) CUDA-enabled GPU
-
Clone the repository
git clone https://github.com/eadali/PiSAR.git cd PiSAR -
(Recommended) Create a virtual environment
python3 -m venv pisar source pisar/bin/activate -
Install dependencies
- CPU only:
pip3 install -r requirements.txt
- GPU (CUDA) support:
pip3 install -r requirements-cuda.txt
- CPU only:
-
Verify installation
python3 -c "import torch; print(torch.cuda.is_available())"
See requirements.txt and requirements-cuda.txt for details.
To process an image, video, or camera stream, use the following commands:
python3 demo.py config/yolo8n-bytetrack-cpu.yaml --onnx-path downloads/yolo8n-416.onnx --video downloads/forest.mp4python3 demo.py config/yolo8n-bytetrack-cuda.yaml --onnx-path downloads/yolo8n-416.onnx --video downloads/forest.mp4| Argument | Description | Required/Default |
|---|---|---|
| config | Path to the YAML configuration file | Required |
| --onnx-path | Path to the ONNX model file | Required |
| --image | Path to the input image file | Mutually exclusive with --video/--camid |
| --video | Path to the input video file | Mutually exclusive with --image/--camid |
| --camid | Camera ID for video capture | Mutually exclusive with --image/--video |
Note:
- You must provide exactly one of
--image,--video, or--camid. - The
configargument is a positional argument (no--config).
Special thanks to the StephanST for providing the WALDO30 model used in this project.

