API that extracts important details from text, stores them as vector embeddings, and retrieves them with semantic search.
- Add long-term memory to any chatbot
- Query memories with natural language
git clone https://github.com/diskflip/memory-api.git
cd memory-api
python -m venv venv
source venv/bin/activate
pip install requests
python demo.pygit clone https://github.com/diskflip/memory-api.git
cd memory-api
python3 -m venv venvActivate virtual environment:
- macOS/Linux:
source venv/bin/activate - Windows:
venv\Scripts\activate
pip install -r requirements.txtRename .env.example to .env and add your keys.
fastapi dev app/main.pyAPI docs: https://jwi5433-memory-api.hf.space/docs
This setup uses Gemini for embeddings and Supabase for vector storage, but you can swap them:
Embeddings: Replace create_embedding() in app/main.py with any embedding API. Match the dimensionality in your database (default 1536).
Database: Replace the Supabase calls with any vector database.