The library includes data and scripts to reproduce the experiments reported in the paper.
Federico Errica, Marco Podda, Davide Bacciu, Alessio Micheli: A Fair Comparison of Graph Neural Networks for Graph Classification. Proceedings of the 8th International Conference on Learning Representations (ICLR 2020).
@inproceedings{errica_fair_2020,
title = {A fair comparison of graph neural networks for graph classification},
booktitle = {Proceedings of the 8th {International} {Conference} on {Learning} {Representations} ({ICLR})},
author = {Errica, Federico and Podda, Marco and Bacciu, Davide and Micheli, Alessio},
year = {2020}
}
--
| D&D | NCI1 | PROTEINS | |
|---|---|---|---|
| Baseline | |||
| DGCNN | |||
| DiffPool | |||
| ECC | |||
| GIN | |||
| GraphSAGE | |||
| CGMM | |||
| ECGMM | |||
| iCGMMf | |||
| GSPN | - | - |
| IMDB-B | IMDB-M | REDDIT-B | REDDIT-5K | COLLAB | |
|---|---|---|---|---|---|
| Baseline | |||||
| DGCNN | |||||
| DiffPool | |||||
| ECC | - | - | - | ||
| GIN | |||||
| GraphSAGE | |||||
| CGMM | |||||
| ECGMM | |||||
| iCGMMf | |||||
| GSPN | - | - |
If you are interested in an introduction to Deep Graph Networks (and a new library!), check this out:
Bacciu Davide, Errica Federico, Micheli Alessio, Podda Marco: A Gentle Introduction to Deep Learning for Graphs, Neural Networks, 2020. DOI: 10.1016/j.neunet.2020.06.006.
We provide a script to install a virtual environment called gnn-comparison. You will a Python version installed on your system.
To install the required packages, follow there instructions (tested on a linux terminal):
-
clone the repository
-
cdinto the cloned directorycd gnn-comparison
-
change the
PYTHON_VERSIONvariable ininstall.shto your system's Python version.
-
run the installation script
source install_original.sh [<your_cuda_version>]
Where <your_cuda_version> is an optional argument that can be either cpu, cu92, cu100 or cu101.
Pytorch Geometric 1.4.0 will also be installed.
-
run the installation script
source install.sh [<your_cuda_version>] [<your_pytorch_version>]
Where <your_pytorch_version> should be >= 2.0.1, and <your_cuda_version> is an optional argument that can be either cpu, cu116, cu117 or cu118. If you do not provide any of them the script will default to Pytorch 2.0.1 and cpu.
Pytorch Geometric 2.3.1 will also be installed.
Notes:
- It is up to you to ensure the Python version is consistent with the Pytorch, Torch Geometric, and CUDA versions you are going to install
- Please open an issue if something is not working as expected.
To reproduce the experiments, first preprocess datasets as follows:
python PrepareDatasets.py DATA/CHEMICAL --dataset-name <name> --outer-k 10
python PrepareDatasets.py DATA/SOCIAL_1 --dataset-name <name> --use-one --outer-k 10
python PrepareDatasets.py DATA/SOCIAL_DEGREE --dataset-name <name> --use-degree --outer-k 10
Where <name> is the name of the dataset. Then, substitute the split (json) files with the ones provided in the data_splits folder.
Please note that dataset folders should be organized as follows:
CHEMICAL:
NCI1
DD
ENZYMES
PROTEINS
SOCIAL[_1 | _DEGREE]:
IMDB-BINARY
IMDB-MULTI
REDDIT-BINARY
REDDIT-MULTI-5K
COLLAB
Then, you can launch experiments by typing:
cp -r DATA/[CHEMICAL|SOCIAL_1|SOCIAL_DEGREE]/<name> DATA
python Launch_Experiments.py --config-file <config> --dataset-name <name> --result-folder <your-result-folder> --debug
Where <config> is your config file (e.g. config_BaselineChemical.yml), and <name> is the dataset name chosen as before.
You can only use CUDA with the --debug option, parallel GPUs support is not provided.
If you would like PyTorch not to spawn multiple threads for each process (highly recommended), append export OMP_NUM_THREADS=1 to your .bashrc file.