This repo is the PyTorch codes for "Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection"
Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection
usage: main_adstyle.py [-h] [--train_dir TRAIN_DIR] [--test_dir TEST_DIR] [--pretrained_dir PRETRAINED_DIR] [--api_key API_KEY] [--batch_size BATCH_SIZE] [--round ROUND] [--lr LR] [--max_len MAX_LEN]
optional arguments:
-h, --help show this help message and exit
--train_dir TRAIN_DIR
train set direcotry
--test_dir TEST_DIR test set direcotry
--pretrained_dir PRETRAINED_DIR
sheepdog pretrained model direcotry
--api_key API_KEY OpenAI API KEY
--batch_size BATCH_SIZE
batch size
--round ROUND training rounds
--lr LR learning rate
--max_len MAX_LEN max token length
Currently, we provide the pretrained model (Sheepdog) used as a starting point for our training.
| Dataset | model |
|---|---|
| Politifact | Download |
| Gossipcop | Download |
| Constraint | Download |
If you find this repo useful for your research, please consider citing our paper:
@inproceedings{park2025adversarial,
title={Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection},
author={Park, Sungwon and Han, Sungwon and Xie, Xing and Lee, Jae-Gil and Cha, Meeyoung},
booktitle={Proceedings of the ACM on Web Conference 2025},
pages={4024--4033},
year={2025}
}
