Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions Optique/001-Ondes/Q001-005.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,26 @@
Montrez qu’une onde plane $\mathbf{E}\left( \mathbf{r}, t\right) = \mathbf{E}_\circ e^{i \left(\mathbf{k} \cdot \mathbf{r} - \omega t\right) }$ est une solution de l’équation d’onde.

### Réponse
On peut vérifier que $Re(E_{0} e^{i(kx-\omega t)})$ est une solution de cette équation d'ondes.

\begin{equation*}
Re(E_{0} e^{i(kx-\omega t)}) &= E_{0} cos(kx -\omega t)
\end{equation*}

\begin{equation*}
\nabla^2 (E_{0} cos(kx -\omega t)) - \mu_{0} \epsilon \frac{d^2 (E_{0} cos(kx -\omega t))}{dt^2} = 0\\
\end{equation*}

\begin{equation*}
\frac{d^2 (E_{0} cos(kx -\omega t))}{dx^2} - \mu_{0} \epsilon \frac{d^2 (E_{0} cos(kx -\omega t))}{dt^2} = 0\\
\end{equation*}

\begin{equation*}
E_{0} (-k^2 cos(\omega t - kx)) - \mu_{0} \epsilon E_{0} (- \omega^2 cos(\omega t - kx)) = 0\\
\end{equation*}

\begin{equation*}
-k^2 + \mu_{0} \epsilon \omega^2 = 0\\
\end{equation*}

Ainsi, considérant que $k = \frac{\omega}{\sqrt{\mu_{0} \epsilon}}$, nous pouvons affirmer que $Re(E_{0} e^{i(kx-\omega t)})$ est une solution de l'équation d'onde.