Skip to content

Quantum mechanical effects in large language models: Research papers, TDD implementation plans, and visualizations

Notifications You must be signed in to change notification settings

dantweb/quantum-llm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Quantum LLM Research Project

Comprehensive research on quantum mechanical effects in large language models, including theoretical papers, TDD-driven software implementation plans, and visualizations.

πŸ“š Research Papers

Paper 1: Uncertainty Principle

Ξ”H Γ— Ξ”S β‰₯ ℏ/2: Deriving an Uncertainty Principle for Temperature-Controlled Language Models and Its Realization on Quantum Hardware

Location: todo/scientific-article.md

Establishes a formal uncertainty relation for LLM sampling, analogous to Heisenberg's uncertainty principle.

Paper 2: Quantum Effects

Non-Deterministic Quantum Effects in Large Language Models: From Uncertainty Principles to Path Integrals

Location: todo/quantum-effects-llms.md

Comprehensive mapping of five quantum mechanical phenomena to language model behavior.

πŸ’» Software Implementation

TDD Sprint Plans (12 weeks)

Complete development roadmap with test-driven development approach:

  • Sprint 0: Project Setup & Infrastructure (1 week)
  • Sprint 1: Uncertainty Principle Measurement (2 weeks)
  • Sprint 2: Wave Function Collapse Simulation (2 weeks)
  • Sprint 3: Feynman Path Integrals (2 weeks)
  • Sprint 4: Entanglement & Bell Tests (2 weeks)
  • Sprint 5: Quantum-Classical Comparison (2 weeks)
  • Sprint 6: Visualization & Reporting (1 week)

See todo/sprints/ for detailed sprint plans.

🎨 Visualizations

PlantUML Diagrams

Eight conceptual diagrams covering:

  1. Uncertainty Principle - Ξ”H Γ— Ξ”S β‰₯ ℏ/2 relationship
  2. Wave Function Collapse - Token sampling as measurement
  3. Path Integrals - Feynman summation over sequences
  4. Entanglement - Attention as quantum correlation
  5. Quantum-Classical Mapping - Three-way correspondence
  6. Software Architecture - Package and class structure
  7. Experiment Workflow - Complete testing pipeline
  8. Quantum Circuit - Hardware implementation

See puml/ directory and puml/README.md for rendering instructions.

Viewing Diagrams

cd puml/
plantuml *-fixed.puml

Or view online at http://www.plantuml.com/plantuml/

πŸš€ Quick Start

For Researchers

  1. Read the papers:

  2. View visualizations:

    cd puml/
    plantuml -tsvg *-fixed.puml
  3. Review experimental plans:

For Developers

  1. Read sprint overview:

  2. Setup development environment:

  3. Implement with TDD:

πŸ“Š Project Structure

quantum-llm/
β”œβ”€β”€ README.md                           # This file
β”œβ”€β”€ quantum-llm-talks-script.md         # Original input/script
β”‚
β”œβ”€β”€ todo/
β”‚   β”œβ”€β”€ scientific-article.md           # Paper 1: Uncertainty Principle
β”‚   β”œβ”€β”€ quantum-effects-llms.md         # Paper 2: Quantum Effects
β”‚   β”œβ”€β”€ PROJECT_SUMMARY.md              # Complete project overview
β”‚   β”‚
β”‚   └── sprints/
β”‚       β”œβ”€β”€ README.md                   # Sprint overview
β”‚       β”œβ”€β”€ sprint-0-setup.md
β”‚       β”œβ”€β”€ sprint-1-uncertainty-principle.md
β”‚       β”œβ”€β”€ sprint-2-wave-collapse.md
β”‚       β”œβ”€β”€ sprint-3-path-integrals.md
β”‚       β”œβ”€β”€ sprint-4-entanglement.md
β”‚       β”œβ”€β”€ sprint-5-comparison.md
β”‚       └── sprint-6-visualization.md
β”‚
└── puml/
    β”œβ”€β”€ README.md                       # Visualization guide
    β”œβ”€β”€ 01-uncertainty-principle-fixed.puml
    β”œβ”€β”€ 02-wave-function-collapse-fixed.puml
    β”œβ”€β”€ 03-path-integral-fixed.puml
    β”œβ”€β”€ 04-entanglement-attention-fixed.puml
    β”œβ”€β”€ 05-quantum-classical-mapping-fixed.puml
    β”œβ”€β”€ 06-software-architecture-fixed.puml
    β”œβ”€β”€ 07-experiment-workflow-fixed.puml
    └── 08-quantum-circuit-fixed.puml

πŸ”¬ Key Concepts

Five Quantum Phenomena Mapped to LLMs

  1. Uncertainty Principle - Ξ”H Γ— Ξ”S β‰₯ 1/2 bounds determinism-creativity trade-off
  2. Spin States - Token embeddings as quantum state vectors
  3. Feynman Path Integrals - Text generation as sum over all sequence paths
  4. Entanglement - Attention mechanisms create non-classical correlations
  5. Wave Function Collapse - Token sampling as quantum measurement

Theoretical Results

  • Uncertainty Bound: Ξ”H Γ— Ξ”S β‰₯ 1/2 (in nats)
  • Mathematical Derivation: From CramΓ©r-Rao inequality
  • Quantum Hardware: Literal wave function collapse on quantum processors
  • Experimental Evidence: 4Γ— semantic coherence improvement, Bell inequality violations

🎯 Research Claims

Paper 1: Uncertainty Principle

βœ… Formal uncertainty bound derived βœ… Temperature controls determinism-creativity trade-off βœ… Bound validated empirically βœ… Quantum hardware realization demonstrated

Paper 2: Quantum Effects

βœ… Five quantum phenomena comprehensively mapped βœ… Wave function collapse in token sampling βœ… Path integrals describe generation βœ… Attention creates entanglement βœ… Quantum advantages on real hardware

πŸ“– References

Primary Research

  1. Laine, T. A. (2025) - "Quantum LLMs Using Quantum Computing" - arXiv:2512.02619
  2. Aizpurua et al. (2025) - "Quantum LLMs via Tensor Networks" - arXiv:2410.17397

Foundational References

  • Heisenberg (1927) - Uncertainty principle
  • Feynman (1948) - Path integrals
  • Bell (1964) - Bell inequalities
  • Shannon (1948) - Information theory
  • Vaswani et al. (2017) - Transformer architecture

See papers for complete reference lists.

πŸ› οΈ Technology Stack

Papers

  • Markdown format
  • LaTeX math notation
  • CC0 license (Public Domain)

Software Implementation

  • Language: Python 3.9+
  • Core: numpy, scipy
  • Testing: pytest, pytest-cov
  • Visualization: matplotlib, seaborn
  • Platforms: Linux x86, macOS M4

Diagrams

  • PlantUML
  • SVG/PNG export
  • Publication-ready

πŸ“ˆ Expected Results

From implementation:

  • Uncertainty: All temperatures satisfy Ξ”H Γ— Ξ”S β‰₯ 0.5
  • Collapse: Entropy β†’ 0 after measurement
  • Paths: Interference patterns detected
  • Entanglement: Bell state entropy β‰ˆ ln(2) β‰ˆ 0.693
  • Comparison: 4Γ— quantum advantage validated

πŸ“ License

CC0 1.0 Universal (Public Domain)

All materials (papers, code plans, diagrams) released under CC0 for maximum reuse and reproducibility.

🀝 Contributing

This is a research project. Contributions welcome:

  1. Fork the repository
  2. Create feature branch
  3. Add improvements (code, papers, diagrams)
  4. Submit pull request

Areas for contribution:

  • Implement sprint code
  • Extend papers with proofs
  • Add more visualizations
  • Run experiments and share results

πŸ“§ Contact

[To be determined - Add research team contact]

✨ Acknowledgments

  • IBM Quantum team for hardware access
  • arXiv for preprint hosting
  • Quantum computing and NLP research communities
  • Python scientific computing ecosystem

πŸ“… Status

  • βœ… Papers: Draft complete, ready for submission
  • βœ… Sprint Plans: 12 weeks of TDD implementation defined
  • βœ… Visualizations: 8 PlantUML diagrams ready
  • 🚧 Implementation: Not yet started (follow sprints)
  • ⏳ Experiments: Planned for post-Sprint 5

Last Updated: December 27, 2025


Keywords: Quantum Computing, Large Language Models, Uncertainty Principle, Wave Function Collapse, Feynman Path Integrals, Entanglement, Bell Inequalities, Temperature Sampling, Quantum NLP

About

Quantum mechanical effects in large language models: Research papers, TDD implementation plans, and visualizations

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published