Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 129 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,132 @@ For working with ipython3 notebook you need:
python3 ethdrain.py -o csv
3. Copy "transactions.csv" to path ipython3 notebook
4. Run all in transaction_analysis_huge_ethereum_mixer.ipynb
library("data.table")

setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data")

#Reads in data from file then subsets data for specified dates
powerDT <- data.table::fread(input = "household_power_consumption.txt"
, na.strings="?"
)

# Prevents histogram from printing in scientific notation
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")]

# Change Date Column to Date Type
powerDT[, Date := lapply(.SD, as.Date, "%d/%m/%Y"), .SDcols = c("Date")]

# Filter Dates for 2007-02-01 and 2007-02-02
powerDT <- powerDT[(Date >= "2007-02-01") & (Date <= "2007-02-02")]

png("plot1.png", width=480, height=480)

## Plot 1
hist(powerDT[, Global_active_power], main="Global Active Power",
xlab="Global Active Power (kilowatts)", ylab="Frequency", col="Red")

dev.off()


library("data.table")

setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data")

#Reads in data from file then subsets data for specified dates
powerDT <- data.table::fread(input = "household_power_consumption.txt"
, na.strings="?"
)

# Prevents Scientific Notation
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")]

# Making a POSIXct date capable of being filtered and graphed by time of day
powerDT[, dateTime := as.POSIXct(paste(Date, Time), format = "%d/%m/%Y %H:%M:%S")]

# Filter Dates for 2007-02-01 and 2007-02-02
powerDT <- powerDT[(dateTime >= "2007-02-01") & (dateTime < "2007-02-03")]

png("plot2.png", width=480, height=480)

## Plot 2
plot(x = powerDT[, dateTime]
, y = powerDT[, Global_active_power]
, type="l", xlab="", ylab="Global Active Power (kilowatts)")

dev.off()


library("data.table")

setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data")

#Reads in data from file then subsets data for specified dates
powerDT <- data.table::fread(input = "household_power_consumption.txt"
, na.strings="?"
)

# Prevents Scientific Notation
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")]

# Making a POSIXct date capable of being filtered and graphed by time of day
powerDT[, dateTime := as.POSIXct(paste(Date, Time), format = "%d/%m/%Y %H:%M:%S")]

# Filter Dates for 2007-02-01 and 2007-02-02
powerDT <- powerDT[(dateTime >= "2007-02-01") & (dateTime < "2007-02-03")]

png("plot3.png", width=480, height=480)

# Plot 3
plot(powerDT[, dateTime], powerDT[, Sub_metering_1], type="l", xlab="", ylab="Energy sub metering")
lines(powerDT[, dateTime], powerDT[, Sub_metering_2],col="red")
lines(powerDT[, dateTime], powerDT[, Sub_metering_3],col="blue")
legend("topright"
, col=c("black","red","blue")
, c("Sub_metering_1 ","Sub_metering_2 ", "Sub_metering_3 ")
,lty=c(1,1), lwd=c(1,1))

dev.off()


library("data.table")

setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data")

#Reads in data from file then subsets data for specified dates
powerDT <- data.table::fread(input = "household_power_consumption.txt"
, na.strings="?"
)

# Prevents Scientific Notation
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")]

# Making a POSIXct date capable of being filtered and graphed by time of day
powerDT[, dateTime := as.POSIXct(paste(Date, Time), format = "%d/%m/%Y %H:%M:%S")]

# Filter Dates for 2007-02-01 and 2007-02-02
powerDT <- powerDT[(dateTime >= "2007-02-01") & (dateTime < "2007-02-03")]

png("plot4.png", width=480, height=480)

par(mfrow=c(2,2))

# Plot 1
plot(powerDT[, dateTime], powerDT[, Global_active_power], type="l", xlab="", ylab="Global Active Power")

# Plot 2
plot(powerDT[, dateTime],powerDT[, Voltage], type="l", xlab="datetime", ylab="Voltage")

# Plot 3
plot(powerDT[, dateTime], powerDT[, Sub_metering_1], type="l", xlab="", ylab="Energy sub metering")
lines(powerDT[, dateTime], powerDT[, Sub_metering_2], col="red")
lines(powerDT[, dateTime], powerDT[, Sub_metering_3],col="blue")
legend("topright", col=c("black","red","blue")
, c("Sub_metering_1 ","Sub_metering_2 ", "Sub_metering_3 ")
, lty=c(1,1)
, bty="n"
, cex=.5)

# Plot 4
plot(powerDT[, dateTime], powerDT[,Global_reactive_power], type="l", xlab="datetime", ylab="Global_reactive_power")

dev.off()