Skip to content

convergence-lab/SMOGN

Repository files navigation

SMOGN

Python Implementation of SMOGN algorithm.

SMOGN is a over and under sampling algorighm for regression data.

git clone --recursive https://github.com/convergence-lab/SMOGN.git

Docmentation

Examples

python test.py                                                                                                                (MobileInteractNet) 4171ms  土 11/ 9 12:58:58 2019
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/Abalone.csv
RandomForrest           MSE: 4.23
SMOGN RandomForrest     MSE: 4.0
Relative Improvement    5.66 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/Accel.csv
RandomForrest           MSE: 14.7
SMOGN RandomForrest     MSE: 17.8
Relative Improvement    -19.2 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/a1.csv
RandomForrest           MSE: 3.69e+02
SMOGN RandomForrest     MSE: 3.6e+02
Relative Improvement    2.28 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/a2.csv
RandomForrest           MSE: 62.8
SMOGN RandomForrest     MSE: 65.9
Relative Improvement    -4.92 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/a3.csv
RandomForrest           MSE: 47.5
SMOGN RandomForrest     MSE: 46.5
Relative Improvement    1.97 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/a4.csv
RandomForrest           MSE: 5.78
SMOGN RandomForrest     MSE: 3.02
Relative Improvement    62.9 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/a6.csv
RandomForrest           MSE: 1.91e+02
SMOGN RandomForrest     MSE: 1.57e+02
Relative Improvement    19.3 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/a7.csv
RandomForrest           MSE: 10.9
SMOGN RandomForrest     MSE: 7.81
Relative Improvement    32.9 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/availPwr.csv
RandomForrest           MSE: 5.24e+03
SMOGN RandomForrest     MSE: 3.71e+03
Relative Improvement    34.2 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/bank8FM.csv
RandomForrest           MSE: 0.00113
SMOGN RandomForrest     MSE: 0.00116
Relative Improvement    -1.98 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/boston.csv
RandomForrest           MSE: 23.0
SMOGN RandomForrest     MSE: 17.9
Relative Improvement    24.9 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/cpuSm.csv
RandomForrest           MSE: 10.5
SMOGN RandomForrest     MSE: 10.1
Relative Improvement    3.39 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/fuelCons.csv
RandomForrest           MSE: 6.14
SMOGN RandomForrest     MSE: 6.51
Relative Improvement    -5.86 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/heat.csv
RandomForrest           MSE: 2.31e+02
SMOGN RandomForrest     MSE: 2.33e+02
Relative Improvement    -0.789 %
=====================
Dataset: Imbalanced-Regression-DataSets/CSV_data/maxTorque.csv
RandomForrest           MSE: 1.48e+04
SMOGN RandomForrest     MSE: 1.26e+04
Relative Improvement    15.7 %

Avg Improvemnet 11.4 %

References

  • Branco, P., Ribeiro, R. P., Torgo, L., Krawczyk, B., & Moniz, N. (2017). SMOGN: a Pre-processing Approach for Imbalanced Regression. In Proceedings of Machine Learning Research (Vol. 74).

About

Python Implementatin of SMOGN

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published