Copyright (C) 2024-2025 Sergii V. Siryk
Copyright (C) 2024-2025 Vincenzo Di Florio
This software is distributed under the terms the terms of the GNU/GPL licence v3
This repository contains a MATLAB script to compute the analytical solution of the Linearized Poisson-Boltzmann equation:
for solutes modeled as
analytical_pb.m: Main script (wrapper).multi_spheres_cg5.m: Computes the expansion coefficients of the potentials, used for further calculations, and the total energy.calc_energy_components0.m: Performs energy partitioning as described in [4].calculate_potentials1.m: Computes the potential at specified points.array_cg15.mat: Pre-computed Clebsch-Gordan coefficients for calculations with n_max<=15
[1] Siryk, S. V., Bendandi, A., Diaspro, A., & Rocchia, W. (2021). Charged dielectric spheres interacting in electrolytic solution: A linearized Poisson–Boltzmann equation model. The Journal of Chemical Physics, 155(11).
[2] Siryk, S. V., & Rocchia, W. (2022). Arbitrary-Shape Dielectric Particles Interacting in the Linearized Poisson–Boltzmann Framework: An Analytical Treatment. The Journal of Physical Chemistry B, 126(49), 10400-10426.
[3] Di Florio, V., Ansalone, P., Siryk, S. V., Decherchi, S., De Falco, C., & Rocchia, W. (2025). NextGenPB: An analytically-enabled super resolution tool for solving the Poisson-Boltzmann Equation featuring local (de) refinement. Computer Physics Communications, 109816.
[4] Rocchia, W., Alexov, E., & Honig, B. (2001). Extending the applicability of the nonlinear Poisson− Boltzmann equation: multiple dielectric constants and multivalent ions. The Journal of Physical Chemistry B, 105(28), 6507-6514.