Changepoint detection with Pruned Exact Linear Time.
from pelt import predict
predict(signal, penalty=20, segment_cost_function="l1", jump=10, minimum_segment_length=2)use std::num::NonZero;
use pelt::{Pelt, SegmentCostFunction};
// Setup the structure for calculating changepoints
let pelt = Pelt::new()
.with_jump(NonZero::new(5).expect("Invalid number"))
.with_minimum_segment_length(NonZero::new(2).expect("Invalid number"))
.with_segment_cost_function(SegmentCostFunction::L1);
// Do the calculation on a data set
let penalty = 10.0;
let result = pelt.predict(&signal[..], penalty)?;# Install maturin inside a Python environment
python3 -m venv .env
source .env/bin/activate
pip install maturin numpy
# Create a Python package from the Rust code
maturin develop --features python
# Open an interpreter
python
>>> from pelt import predict
>>> import numpy as np
>>> signal = np.array([np.sin(np.arange(0, 1000, 10))]).transpose()
>>> predict(signal, penalty=20)Warning
Like all benchmarks, take these with a grain of salt.
Comparison with ruptures:
| Cost Function | Data Points | Data Dimension | Mean pelt |
Mean ruptures |
Times Faster |
|---|---|---|---|---|---|
| L2 | 100 | 1D | 0.004ms | 3.113ms | 753.1x |
| L2 | 100 | 2D | 0.005ms | 3.251ms | 608.5x |
| L2 | 1000 | 1D | 0.419ms | 188.546ms | 449.8x |
| L2 | 1000 | 2D | 0.572ms | 94.201ms | 164.7x |
| L2 | 10000 | 1D | 95.851ms | 12.103s | 126.3x |
| L2 | 10000 | 2D | 19.871ms | 1.778s | 89.5x |
| L1 | 100 | 1D | 0.010ms | 5.101ms | 508.8x |
| L1 | 100 | 2D | 0.025ms | 5.323ms | 213.0x |
| L1 | 1000 | 1D | 0.641ms | 180.250ms | 281.3x |
| L1 | 1000 | 2D | 3.595ms | 638.049ms | 177.5x |
| L1 | 10000 | 1D | 43.444ms | 15.710s | 361.6x |
| L1 | 10000 | 2D | 364.553ms | 30.572s | 83.9x |
Command
maturin develop --features python --release
python benches/bench_compare.pyCommand
cargo build --example simple --profile profiling \
&& samply record target/profiling/examples/simple tests/signals-large.csv