1. conda create --prefix ./env numpy matplotlib pandas scikit-learn
2. conda activate ./env
conda env list
conda list
- Download miniconda (or anaconda) and install it on the local computer. https://docs.conda.io/en/latest/miniconda.html#macos-installers
- Test the installation in the terminal: $which conda
- Create a project folder and run: $cd project folder
- Create a custom environment within the project folder: (i.e.) $ conda create --prefix ./env numpy matplotlib pandas scikit-learn jupyter
- Activate the new environment by running: $conda activate)
- Load up a Jupiter Notebook and check the tool we need: $jupyter notebook
- share the entire project folder, including the environment folder containing all required packages.
- Simply only need to activate the environment and run the code.
- share a
.ymlfile of the conda environment- first export the env:
conda env export --prefix ./env > environment.yml - others to create the same env based on this environment.yml file:
conda env create --file environment.yml --name env_from_file
- first export the env:
