This repository contains the implementation for the paper "Robust AI-ECG for Predicting Left Ventricular Systolic Dysfunction in Pediatric Congenital Heart Disease", focusing on building robust AI-ECG models to predict LVSD.
- Clone the repository
- (Option A) Install with pip using requirements.txt
pip install -r requirements.txt - (Option B) Create conda environment using environment.yml
conda env create -f environment.yml conda activate your_env_name
models/ViT_MAE_24ch.py: ViT-MAE model for pre-trainingresnet.py: ResNet model for classification
preprocessing/postprocessing: code for preprocessing/postprocessingdata.py: datasettrain_model.py: main training code for single modelutils.py: random utility functions
Use train_model.py to train a model.
python train_model.py finetune **args
Key arguments include:
ecg_path: path of ECGlabel_train_file: path of labelslabels: list of outcomes, e.g., ['less50','less45','less40','less35','less30']covariate_path: path of dysfunction characteristicssubsample: training data ratioadv_train: whether use adversarial trainingtrain_group: select groups you want keep for training ("None" for keeping all groups).perturb_level:- "input": add perturbations directly on input ECG
- "embedding": add perturbations on embedding space
perturb_type:- "adversarial": generate adversarial perturbations
- "gaussian": add Gaussian noise
If you use this code or find our work helpful, please consider citing our paper:
@misc{yang2025robustaiecgpredictingleft,
title={Robust AI-ECG for Predicting Left Ventricular Systolic Dysfunction in Pediatric Congenital Heart Disease},
author={Yuting Yang and Lorenzo Peracchio and Joshua Mayourian and John K. Triedman and Timothy Miller and William G. La Cava},
year={2025},
eprint={2509.19564},
archivePrefix={arXiv},
primaryClass={cs.CE},
url={https://arxiv.org/abs/2509.19564},
}