Skip to content

Build robust AI-ECG models to predict Left Ventricular Systolic Dysfunction in Pediatric Congenital Heart Disease

Notifications You must be signed in to change notification settings

cavalab/robust-AI-ECG

Repository files navigation

Robust AI-ECG for Pediatric Cardiology

This repository contains the implementation for the paper "Robust AI-ECG for Predicting Left Ventricular Systolic Dysfunction in Pediatric Congenital Heart Disease", focusing on building robust AI-ECG models to predict LVSD.

Installation

  • Clone the repository
  • (Option A) Install with pip using requirements.txt
    pip install -r requirements.txt
    
  • (Option B) Create conda environment using environment.yml
    conda env create -f environment.yml
    conda activate your_env_name
    

Contents

  • models/
    • ViT_MAE_24ch.py: ViT-MAE model for pre-training
    • resnet.py: ResNet model for classification
  • preprocessing/postprocessing: code for preprocessing/postprocessing
  • data.py: dataset
  • train_model.py: main training code for single model
  • utils.py: random utility functions

Training

Use train_model.py to train a model.

python train_model.py finetune **args

Key arguments include:

  • ecg_path: path of ECG
  • label_train_file: path of labels
  • labels: list of outcomes, e.g., ['less50','less45','less40','less35','less30']
  • covariate_path: path of dysfunction characteristics
  • subsample: training data ratio
  • adv_train: whether use adversarial training
  • train_group: select groups you want keep for training ("None" for keeping all groups).
  • perturb_level:
    • "input": add perturbations directly on input ECG
    • "embedding": add perturbations on embedding space
  • perturb_type:
    • "adversarial": generate adversarial perturbations
    • "gaussian": add Gaussian noise

Citation

If you use this code or find our work helpful, please consider citing our paper:

@misc{yang2025robustaiecgpredictingleft,
      title={Robust AI-ECG for Predicting Left Ventricular Systolic Dysfunction in Pediatric Congenital Heart Disease}, 
      author={Yuting Yang and Lorenzo Peracchio and Joshua Mayourian and John K. Triedman and Timothy Miller and William G. La Cava},
      year={2025},
      eprint={2509.19564},
      archivePrefix={arXiv},
      primaryClass={cs.CE},
      url={https://arxiv.org/abs/2509.19564}, 
}

About

Build robust AI-ECG models to predict Left Ventricular Systolic Dysfunction in Pediatric Congenital Heart Disease

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages